|
|
A073910
|
|
Smallest number m such that m and the product of digits of m are both divisible by 3n, or 0 if no such number exists.
|
|
5
|
|
|
3, 6, 9, 168, 135, 36, 273, 168, 999, 0, 0, 1296, 0, 378, 495, 384, 0, 1296, 0, 0, 1197, 0, 0, 1368, 3525, 0, 2997, 672, 0, 0, 0, 384, 0, 0, 735, 1296, 0, 0, 0, 0, 0, 3276, 0, 0, 3915, 0, 0, 3168, 7497, 0, 0, 0, 0, 5994, 0, 7896, 0, 0, 0, 0, 0, 0, 7938, 2688, 0, 0, 0, 0, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Here 0 is regarded as not divisible by any number.
a(n) = 0 if 10 divides 3n or n contains a prime divisor > 9. - Sascha Kurz, Aug 23 2002
|
|
LINKS
|
|
|
FORMULA
|
|
|
MAPLE
|
f := 3:for i from 1 to 1000 do b := ifactors(f*i)[2]: if b[nops(b)][1]>9 or (f*i mod 10) =0 then a[i] := 0:else j := 0:while true do j := j+f*i:c := convert(j, base, 10):d := product(c[k], k=1..nops(c)): if (d mod f*i)=0 and d>0 then a[i] := j:break:fi:od:fi:od:seq(a[k], k=1..1000);
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|