login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073904
Smallest multiple k*n of n having n divisors.
12
1, 2, 9, 8, 625, 12, 117649, 24, 36, 80, 25937424601, 60, 23298085122481, 448, 2025, 384, 48661191875666868481, 180, 104127350297911241532841, 240, 35721, 11264, 907846434775996175406740561329, 360, 10000, 53248, 26244, 1344
OFFSET
1,2
COMMENTS
Smallest refactorable number, m, such that m=k*n has n divisors. - Robert G. Wilson v, Oct 31 2005
LINKS
Jon E. Schoenfield, Table of n, a(n) for n = 1..388 (first 115 terms from Carole Dubois)
FORMULA
If p is a prime then a(p) = p^(p-1). If n = p^2 then a(n) = 2^(p-1)*p^(p-1).
a(p^r) = (2*3*5*...*p_r)^(p-1) for r < p <= p_r. a(p^r) = (2*3*...*p_(r-1))^(p-1)*p^(p-1) for p > p_r. Else a(p^r) = ...? for r >= p. Problem a(2^r) = ...? Cf. A005179(p^n)=(2*3*...*p_n)^(p-1) for p_n < 2^p. - Thomas Ordowski, Aug 20 2005
a(p^r) = (2*3...*p_(r-1)*p)^(p-1) for p > p_r; else a(p^r) = (2*3...*p...*p_m)^(p-1)*p^(p^k-p) for p <= p_r and p_m < 2^p, where m=r-k+1 for smallest k such that p^k > r, so k=floor(log(r)/log(p))+1 and p > log(p_m)/log(2). Examples: If k=1 then a(p^r) = (2*3*...*p_r)^(p-1) for r < p <= p_r. If p=2 then a(2^r) = (2*3*...*p_m)*2^(2^k-2) for r < 5. For instance, let r=4 so k=3, m=2 and a(2^4)=384. - Thomas Ordowski, Aug 22 2005
If p is a prime and n=p^r then a(p^r) = (s_1*s_2*...*s_r)^(p-1) where (s_r) is a permutation of the (ascending sequence) numbers of the form q^(p^j) for every prime q and j>=0; permutation such that s_(p^j)=p^(p^j) and shifted remainder. For example, if p=3 then (s_r): 3, 2, 3^3, 5, 7, 2^3, 11, 13, 3^9, 17, 19, ... so a(3^r) = (3*2*27*5*...*s_r)^2. - Thomas Ordowski, Aug 29 2005
If n=2^r then a(2^r) is the product of the first r members of the A109429 sequence. - Thomas Ordowski, Aug 29 2005
a(n) = n * A076931(n). - Thomas Ordowski, Oct 07 2005
a(4) = 8; a(2*prime(n)) = A299795(n), for n>1. - Bernard Schott, Nov 06 2022
EXAMPLE
Smallest multiple a(n)=k*n; a(1)=1*1, a(2)=1*2, a(3)=3*3, a(4)=2*4, a(5)=125*5, a(6)=2*6, ... having d(k*n)=n divisors; d(1)=1, d(2)=2, d(3^2)=3, d(2^3)=4, d(5^4)=5, d(2^2*3)=3*2=6, ...
MATHEMATICA
f[n_] := Block[{k = 1}, If[ PrimeQ[n], n^(n - 1), While[d = DivisorSigma[0, k*n]; d != n, k++ ]; k*n]]; Table[ f[n], {n, 28}] (* Robert G. Wilson v *)
CROSSREFS
Cf. A033950 (refactorable numbers, also known as tau numbers).
Cf. A110821 (SuperRefactorable numbers).
Sequence in context: A324553 A230283 A121067 * A036879 A281389 A073927
KEYWORD
nice,nonn,changed
AUTHOR
Amarnath Murthy, Aug 18 2002
EXTENSIONS
a(12) corrected by Thomas Ordowski, Aug 18 2005
Further corrections from Thomas Ordowski, Oct 07 2005
a(21), a(27) & a(28) from Robert G. Wilson v, Oct 31 2005
STATUS
approved