login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest multiple k*n of n having n divisors.
12

%I #43 Dec 21 2024 03:11:25

%S 1,2,9,8,625,12,117649,24,36,80,25937424601,60,23298085122481,448,

%T 2025,384,48661191875666868481,180,104127350297911241532841,240,35721,

%U 11264,907846434775996175406740561329,360,10000,53248,26244,1344

%N Smallest multiple k*n of n having n divisors.

%C Smallest refactorable number, m, such that m=k*n has n divisors. - _Robert G. Wilson v_, Oct 31 2005

%H Jon E. Schoenfield, <a href="/A073904/b073904.txt">Table of n, a(n) for n = 1..388</a> (first 115 terms from Carole Dubois)

%H Carole Dubois, <a href="/A073904/a073904.jpg">semi-Logarithmic pin plot of A073904(n)</a>

%F If p is a prime then a(p) = p^(p-1). If n = p^2 then a(n) = 2^(p-1)*p^(p-1).

%F a(p^r) = (2*3*5*...*p_r)^(p-1) for r < p <= p_r. a(p^r) = (2*3*...*p_(r-1))^(p-1)*p^(p-1) for p > p_r. Else a(p^r) = ...? for r >= p. Problem a(2^r) = ...? Cf. A005179(p^n)=(2*3*...*p_n)^(p-1) for p_n < 2^p. - _Thomas Ordowski_, Aug 20 2005

%F a(p^r) = (2*3...*p_(r-1)*p)^(p-1) for p > p_r; else a(p^r) = (2*3...*p...*p_m)^(p-1)*p^(p^k-p) for p <= p_r and p_m < 2^p, where m=r-k+1 for smallest k such that p^k > r, so k=floor(log(r)/log(p))+1 and p > log(p_m)/log(2). Examples: If k=1 then a(p^r) = (2*3*...*p_r)^(p-1) for r < p <= p_r. If p=2 then a(2^r) = (2*3*...*p_m)*2^(2^k-2) for r < 5. For instance, let r=4 so k=3, m=2 and a(2^4)=384. - _Thomas Ordowski_, Aug 22 2005

%F If p is a prime and n=p^r then a(p^r) = (s_1*s_2*...*s_r)^(p-1) where (s_r) is a permutation of the (ascending sequence) numbers of the form q^(p^j) for every prime q and j>=0; permutation such that s_(p^j)=p^(p^j) and shifted remainder. For example, if p=3 then (s_r): 3, 2, 3^3, 5, 7, 2^3, 11, 13, 3^9, 17, 19, ... so a(3^r) = (3*2*27*5*...*s_r)^2. - _Thomas Ordowski_, Aug 29 2005

%F If n=2^r then a(2^r) is the product of the first r members of the A109429 sequence. - _Thomas Ordowski_, Aug 29 2005

%F a(n) = n * A076931(n). - _Thomas Ordowski_, Oct 07 2005

%F a(4) = 8; a(2*prime(n)) = A299795(n), for n>1. - _Bernard Schott_, Nov 06 2022

%e Smallest multiple a(n)=k*n; a(1)=1*1, a(2)=1*2, a(3)=3*3, a(4)=2*4, a(5)=125*5, a(6)=2*6, ... having d(k*n)=n divisors; d(1)=1, d(2)=2, d(3^2)=3, d(2^3)=4, d(5^4)=5, d(2^2*3)=3*2=6, ...

%t f[n_] := Block[{k = 1}, If[ PrimeQ[n], n^(n - 1), While[d = DivisorSigma[0, k*n]; d != n, k++ ]; k*n]]; Table[ f[n], {n, 28}] (* _Robert G. Wilson v_ *)

%Y Cf. A076931, A050376, A005179, A037992, A050376, A111172, A299795.

%Y Cf. A033950 (refactorable numbers, also known as tau numbers).

%Y Cf. A110821 (SuperRefactorable numbers).

%K nice,nonn

%O 1,2

%A _Amarnath Murthy_, Aug 18 2002

%E a(12) corrected by _Thomas Ordowski_, Aug 18 2005

%E Further corrections from _Thomas Ordowski_, Oct 07 2005

%E a(21), a(27) & a(28) from _Robert G. Wilson v_, Oct 31 2005