The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A073638 Number of anti-divisors of n (A066272) sets a record. 2
 1, 3, 5, 7, 13, 17, 32, 38, 67, 137, 203, 247, 472, 578, 682, 787, 1463, 2047, 2363, 3465, 5197, 5198, 8662, 13513, 15593, 22522, 22523, 29452, 60638, 67567, 67568, 98753, 112612, 157658, 202702, 337837, 337838, 427927, 713212, 788287, 788288, 1013512 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS antid(n) > antid(k) for all k < n. Note that several of these come in pairs, i.e., 5197 & 5198, 22522 & 22523, 67567 & 67568, 337837 & 337838, 788287 & 788288, 1013512 & 1013513 and 1914412 & 1914413 to name a few. See A093071 for more. - Robert G. Wilson v, Mar 17 2004 See A066272 for definition of anti-divisor. LINKS Donovan Johnson, Table of n, a(n) for n = 1..117 (terms < 5*10^11) Jon Perry, Anti-divisors. Jon Perry, The Anti-divisor [Cached copy] Jon Perry, The Anti-divisor: Even More Anti-Divisors [Cached copy] MAPLE P:=proc(q)local a, k, n, t; t:=0; for n from 1 to q do a:=[]; for k from 2 to n-1 do if abs((n mod k)-k/2)<1 then a:=[op(a), k]; fi; od; if nops(a)>t then print(n); t:=nops(a); fi; od; end: P(10^5); # Paolo P. Lava, Sep 05 2014 MATHEMATICA antid[n_] := Select[ Union[ Join[ Select[ Divisors[2n - 1], OddQ[ # ] && # != 1 &], Select[ Divisors[2n + 1], OddQ[ # ] && # != 1 & ], 2n/Select[ Divisors[ 2n], OddQ[ # ] && # != 1 &]]], # < n &]; a = 0; Do[b = Length[ antid[ n]]; If[b > a, Print[n]; a = b], {n, 1, 1013513}] (* Robert G. Wilson v, Mar 17 2004 *) CROSSREFS Sequence in context: A182981 A234388 A003424 * A066464 A062324 A194829 Adjacent sequences:  A073635 A073636 A073637 * A073639 A073640 A073641 KEYWORD nonn AUTHOR Jason Earls, Sep 01 2002 EXTENSIONS More terms from Robert G. Wilson v, Mar 17 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 11:42 EDT 2021. Contains 347584 sequences. (Running on oeis4.)