login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073638
Number of anti-divisors of n (A066272) sets a record.
2
1, 3, 5, 7, 13, 17, 32, 38, 67, 137, 203, 247, 472, 578, 682, 787, 1463, 2047, 2363, 3465, 5197, 5198, 8662, 13513, 15593, 22522, 22523, 29452, 60638, 67567, 67568, 98753, 112612, 157658, 202702, 337837, 337838, 427927, 713212, 788287, 788288, 1013512
OFFSET
1,2
COMMENTS
antid(n) > antid(k) for all k < n.
Note that several of these come in pairs, i.e., 5197 & 5198, 22522 & 22523, 67567 & 67568, 337837 & 337838, 788287 & 788288, 1013512 & 1013513 and 1914412 & 1914413 to name a few. See A093071 for more. - Robert G. Wilson v, Mar 17 2004
See A066272 for definition of anti-divisor.
LINKS
Donovan Johnson, Table of n, a(n) for n = 1..117 (terms < 5*10^11)
Jon Perry, Anti-divisors.
Jon Perry, The Anti-divisor [Cached copy]
MATHEMATICA
antid[n_] := Select[ Union[ Join[ Select[ Divisors[2n - 1], OddQ[ # ] && # != 1 &], Select[ Divisors[2n + 1], OddQ[ # ] && # != 1 & ], 2n/Select[ Divisors[ 2n], OddQ[ # ] && # != 1 &]]], # < n &]; a = 0; Do[b = Length[ antid[ n]]; If[b > a, Print[n]; a = b], {n, 1, 1013513}] (* Robert G. Wilson v, Mar 17 2004 *)
CROSSREFS
Sequence in context: A182981 A234388 A003424 * A066464 A062324 A194829
KEYWORD
nonn
AUTHOR
Jason Earls, Sep 01 2002
EXTENSIONS
More terms from Robert G. Wilson v, Mar 17 2004
STATUS
approved