OFFSET
1,2
COMMENTS
antid(n) > antid(k) for all k < n.
Note that several of these come in pairs, i.e., 5197 & 5198, 22522 & 22523, 67567 & 67568, 337837 & 337838, 788287 & 788288, 1013512 & 1013513 and 1914412 & 1914413 to name a few. See A093071 for more. - Robert G. Wilson v, Mar 17 2004
See A066272 for definition of anti-divisor.
LINKS
Donovan Johnson, Table of n, a(n) for n = 1..117 (terms < 5*10^11)
Jon Perry, Anti-divisors.
Jon Perry, The Anti-divisor [Cached copy]
Jon Perry, The Anti-divisor: Even More Anti-Divisors [Cached copy]
MATHEMATICA
antid[n_] := Select[ Union[ Join[ Select[ Divisors[2n - 1], OddQ[ # ] && # != 1 &], Select[ Divisors[2n + 1], OddQ[ # ] && # != 1 & ], 2n/Select[ Divisors[ 2n], OddQ[ # ] && # != 1 &]]], # < n &]; a = 0; Do[b = Length[ antid[ n]]; If[b > a, Print[n]; a = b], {n, 1, 1013513}] (* Robert G. Wilson v, Mar 17 2004 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jason Earls, Sep 01 2002
EXTENSIONS
More terms from Robert G. Wilson v, Mar 17 2004
STATUS
approved