OFFSET
1,1
COMMENTS
Conjecture: every prime besides 5 is in this list. - Gabriel Cunningham (gcasey(AT)mit.edu), Apr 11 2003
It appears that the terms belong to A007645. There are no primes of form 6k-1 in this sequence. - Alexander Adamchuk, Aug 15 2006
The above conjecture by Cunningham (Apr 11 2003) is false: Since a(2)=3 and a(3)=7 == 1 mod 6, all subsequent terms must also be 1 mod 6 because concatenations of numbers 1 mod 6 with 5 mod 6 are 0 mod 3. - Bob Selcoe, Aug 25 2015
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = A075609(n) for n>1. - Alexander Adamchuk, Aug 15 2006
MAPLE
N:= 10000: # to get all terms before the first one > N
A[1]:= 2:
Primes:= Vector(select(isprime, [seq(2*i+1 , i=1..floor((N-1)/2))])):
Nprimes:= LinearAlgebra:-Dimension(Primes):
Next:= Vector(Nprimes):
Prev:= Vector(Nprimes):
for i from 1 to Nprimes-1 do Next[i]:= i+1; Prev[i+1]:= i od:
first:= 1:
found:= true:
for n from 2 while found do
i:= first;
found:= false;
while i <> 0 do
p:= Primes[i];
if isprime(10^(1+ilog10(p))*A[n-1] + p) then
found:= true;
A[n]:= p;
if i = first then first:= Next[first]
else Next[Prev[i]]:= Next[i]
fi;
if Next[i] <> 0 then
Prev[Next[i]]:= Prev[i]
fi;
break
fi;
i:= Next[i];
od
od:
seq(A[i], i=1..n-2); # Robert Israel, Aug 25 2015
MATHEMATICA
t = {2}; Do[i = 2; While[! PrimeQ[FromDigits[Flatten[IntegerDigits[{Last[t], x = Prime[i]}]]]] || MemberQ[t, x], i++]; AppendTo[t, x], {54}]; t (* Jayanta Basu, Jul 03 2013 *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Aug 09 2002
EXTENSIONS
More terms from Gabriel Cunningham (gcasey(AT)mit.edu), Apr 11 2003
Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 20 2003
STATUS
approved