Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Feb 20 2024 06:59:39
%S 1,3,5,7,13,17,32,38,67,137,203,247,472,578,682,787,1463,2047,2363,
%T 3465,5197,5198,8662,13513,15593,22522,22523,29452,60638,67567,67568,
%U 98753,112612,157658,202702,337837,337838,427927,713212,788287,788288,1013512
%N Number of anti-divisors of n (A066272) sets a record.
%C antid(n) > antid(k) for all k < n.
%C Note that several of these come in pairs, i.e., 5197 & 5198, 22522 & 22523, 67567 & 67568, 337837 & 337838, 788287 & 788288, 1013512 & 1013513 and 1914412 & 1914413 to name a few. See A093071 for more. - _Robert G. Wilson v_, Mar 17 2004
%C See A066272 for definition of anti-divisor.
%H Donovan Johnson, <a href="/A073638/b073638.txt">Table of n, a(n) for n = 1..117</a> (terms < 5*10^11)
%H Jon Perry, <a href="http://www.users.globalnet.co.uk/~perry/maths">Anti-divisors</a>.
%H Jon Perry, <a href="/A066272/a066272a.html">The Anti-divisor</a> [Cached copy]
%H Jon Perry, <a href="/A066272/a066272.html">The Anti-divisor: Even More Anti-Divisors</a> [Cached copy]
%t antid[n_] := Select[ Union[ Join[ Select[ Divisors[2n - 1], OddQ[ # ] && # != 1 &], Select[ Divisors[2n + 1], OddQ[ # ] && # != 1 & ], 2n/Select[ Divisors[ 2n], OddQ[ # ] && # != 1 &]]], # < n &]; a = 0; Do[b = Length[ antid[ n]]; If[b > a, Print[n]; a = b], {n, 1, 1013513}] (* _Robert G. Wilson v_, Mar 17 2004 *)
%K nonn
%O 1,2
%A _Jason Earls_, Sep 01 2002
%E More terms from _Robert G. Wilson v_, Mar 17 2004