login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073325 a(n) = least k > 0 such that prime(k) == n (mod k). 2
1, 2, 3, 4, 75, 9, 79, 18, 17, 10, 19, 20, 91, 22, 23, 41, 83, 24, 16049, 43, 2711, 94, 25, 26, 95, 198, 449, 452, 99, 50, 451, 48, 453, 1072, 447, 54, 16043, 55, 2719, 56, 459, 57, 101, 472, 100371, 62, 105, 102, 103, 104, 467, 110, 107, 65, 109, 63, 115, 118, 117 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

First appearance of n-1 in A004648. Are all positive integers present in A004648 and hence in this sequence? - Zak Seidov, Sep 02 2012

LINKS

Zak Seidov, Table of n, a(n) for n = 1..301

FORMULA

a(n) = Min{x; Mod[A000040(x), x]=n} = Min{x; A004648[x]=n}.

EXAMPLE

a(4) = 75 as prime(75) = 379 == 4 (mod 75).

a(44) = 100371 since prime(100371) = 1304867 == 44 (mod 100371) and prime(k) <> 44 (mod k) for k < 100371.

MATHEMATICA

nn = 60; f[x_] := Mod[Prime[x], x]; t = Table[0, {nn}]; k = 0; While[Times @@ t == 0, k++; n = f[k]; If[n <= nn && t[[n]] == 0, t[[n]] = k]]; Join[{1}, t]

lk[n_]:=Module[{k=1}, While[Mod[Prime[k], k]!=n, k++]; k]; Array[lk, 60, 0] (* Harvey P. Dale, Nov 29 2013 *)

PROG

(PARI) stop=110000; for(n=0, 59, k=1; while(k<stop&((prime(k)%k)!=n), k++); print1(if(k<stop, k, 0), ", "))

CROSSREFS

Cf. A000040, A002808, A004648, A073324, A073326.

Sequence in context: A076519 A066776 A115901 * A142959 A173573 A037395

Adjacent sequences:  A073322 A073323 A073324 * A073326 A073327 A073328

KEYWORD

nonn

AUTHOR

Labos Elemer, Jul 30 2002

EXTENSIONS

Definition revised by N. J. A. Sloane, Aug 12 2009

A216162 merged into this sequence by T. D. Noe, Sep 07 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 09:02 EDT 2021. Contains 348041 sequences. (Running on oeis4.)