login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = least k > 0 such that prime(k) == n (mod k).
3

%I #26 Mar 18 2023 18:35:41

%S 1,2,3,4,75,9,79,18,17,10,19,20,91,22,23,41,83,24,16049,43,2711,94,25,

%T 26,95,198,449,452,99,50,451,48,453,1072,447,54,16043,55,2719,56,459,

%U 57,101,472,100371,62,105,102,103,104,467,110,107,65,109,63,115,118,117

%N a(n) = least k > 0 such that prime(k) == n (mod k).

%C First appearance of n-1 in A004648. Are all positive integers present in A004648 and hence in this sequence? - _Zak Seidov_, Sep 02 2012

%H Zak Seidov, <a href="/A073325/b073325.txt">Table of n, a(n) for n = 1..301</a>

%F a(n) = Min{x; Mod[A000040(x), x]=n} = Min{x; A004648[x]=n}.

%e a(4) = 75 as prime(75) = 379 == 4 (mod 75).

%e a(44) = 100371 since prime(100371) = 1304867 == 44 (mod 100371) and prime(k) <> 44 (mod k) for k < 100371.

%t nn = 60; f[x_] := Mod[Prime[x], x]; t = Table[0, {nn}]; k = 0; While[Times @@ t == 0, k++; n = f[k]; If[n <= nn && t[[n]] == 0, t[[n]] = k]]; Join[{1}, t]

%t lk[n_]:=Module[{k=1},While[Mod[Prime[k],k]!=n,k++];k]; Array[lk,60,0] (* _Harvey P. Dale_, Nov 29 2013 *)

%o (PARI) stop=110000; for(n=0,59,k=1; while(k<stop&((prime(k)%k)!=n), k++); print1(if(k<stop,k,0),","))

%o (Python)

%o from sympy import prime, nextprime

%o def A073325(n):

%o p, m = prime(n), n

%o while p%m != n-1:

%o p = nextprime(p)

%o m += 1

%o return m # _Chai Wah Wu_, Mar 18 2023

%Y Cf. A000040, A002808, A004648, A073324, A073326.

%K nonn

%O 1,2

%A _Labos Elemer_, Jul 30 2002

%E Definition revised by _N. J. A. Sloane_, Aug 12 2009

%E A216162 merged into this sequence by _T. D. Noe_, Sep 07 2012