login
A073311
Number of squarefree numbers in the reduced residue system of n.
11
1, 1, 2, 2, 3, 2, 5, 4, 4, 3, 7, 4, 8, 5, 6, 7, 11, 6, 12, 7, 8, 9, 15, 8, 13, 10, 13, 9, 17, 8, 19, 13, 13, 13, 15, 11, 23, 15, 17, 14, 26, 11, 28, 17, 18, 18, 30, 15, 26, 17, 21, 19, 32, 16, 25, 20, 23, 23, 36, 15, 37, 25, 26, 26, 30, 18, 41, 26, 29, 22, 44, 22, 45, 30, 29, 29, 36
OFFSET
1,3
COMMENTS
Number of positive squarefree numbers <= n that are relatively prime to n.
LINKS
Steven R. Finch, Unitarism and infinitarism.
Steven R. Finch, Unitarism and Infinitarism, February 25, 2004. [Cached copy, with permission of the author]
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 49-50.
FORMULA
a(n) + A073312(n) = A000010(n).
Let s(n) = Sum_{k=1..n} a(k). Then s(n) is asymptotic to C*n^2 where C = (3/Pi^2)*alpha and alpha = Product_{p prime} (1 - 1/(p*(p+1))) = A065463 = 0.7044422009... [From discussions in Number Theory List, Apr 06 2004]
A175046(n) = a(n)*A008966(n). - Reinhard Zumkeller, Apr 05 2010
a(n) = Sum_{k=1..A000010(n)} A008966(A038566(n,k)). - Reinhard Zumkeller, Jul 04 2012
a(n) = Sum_{i=1..n} mu(A007947(n)*i)^2, where mu is the Moebius function (A008683). - Ridouane Oudra, Jul 27 2019
a(n) = Sum_{1<=k<=n, gcd(n,k)=1} mu(k)^2. - Ridouane Oudra, May 25 2023
EXAMPLE
n=15, there are A000010(15)=8 residues: 1, 2, 4=2^2, 7, 8=2^3, 11, 13 and 14; six of them are squarefree: 1, 2, 7, 11, 13 and 14, therefore a(15)=6. [Typo fixed by Reinhard Zumkeller, Mar 19 2010]
MAPLE
with(numtheory): rad := n -> mul(p, p in factorset(n)):
seq(add(mobius(rad(n)*i)^2, i=1..n), n=1..100); # Ridouane Oudra, Jul 27 2019
MATHEMATICA
a[n_] := Select[Range[n], SquareFreeQ[#] && CoprimeQ[#, n]&] // Length;
Array[a, 100] (* Jean-François Alcover, Dec 12 2021 *)
PROG
(Haskell)
a073311 = sum . map a008966 . a038566_row
-- Reinhard Zumkeller, Jul 04 2012
(PARI) a(n)=my(s=1); forfactored(k=2, n-1, if(vecmax(k[2][, 2])==1 && gcd(k[1], n)==1, s++)); s \\ Charles R Greathouse IV, Nov 05 2017
(Magma) [&+[MoebiusMu(&*PrimeDivisors(k)*i)^2:i in [1..k]]: k in [1..65]]; // Marius A. Burtea, Jul 27 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 25 2002
STATUS
approved