login
A048865
a(n) is the number of primes in the reduced residue system mod n.
23
0, 0, 1, 1, 2, 1, 3, 3, 3, 2, 4, 3, 5, 4, 4, 5, 6, 5, 7, 6, 6, 6, 8, 7, 8, 7, 8, 7, 9, 7, 10, 10, 9, 9, 9, 9, 11, 10, 10, 10, 12, 10, 13, 12, 12, 12, 14, 13, 14, 13, 13, 13, 15, 14, 14, 14, 14, 14, 16, 14, 17, 16, 16, 17, 16, 15, 18, 17, 17, 16, 19, 18, 20, 19, 19, 19, 19, 18, 21, 20, 21
OFFSET
1,5
COMMENTS
The number of primes p <= n with p coprime to n. - Enrique Pérez Herrero, Jul 23 2011
LINKS
FORMULA
a(n) = A000720(n) - A001221(n).
From Reinhard Zumkeller, Apr 05 2004: (Start)
a(n) = Sum_{p prime and p<=n} (ceiling(n/p) - floor(n/p)).
a(n) = A093614(n) - A013939(n). (End)
a(n) = A001221(A001783(n)). - Enrique Pérez Herrero, Jul 23 2011
a(n) = A368616(n) - A368641(n). - Wesley Ivan Hurt, Jan 01 2024
EXAMPLE
At n=30 all but 1 element in reduced residue system of 30 are primes (see A048597) so a(30) = Phi(30) - 1 = 7.
n=100: a(100) = Pi(100) - A001221(100) = 25 - 2 = 23.
MAPLE
A048865 := n -> nops(select(isprime, select(k -> igcd(n, k) = 1, [$1..n]))):
seq(A048865(n), n = 1..81); # Peter Luschny, Jul 23 2011
MATHEMATICA
p=Prime[Range[1000]]; q=Table[PrimePi[i], {i, 1, 1000}]; t=Table[c=0; Do[If[GCD[p[[j]], i]==1, c++ ], {j, 1, q[[i-1]]}]; c, {i, 2, 950}]
Table[Count[Select[Range@ n, CoprimeQ[#, n] &], p_ /; PrimeQ@ p], {n, 81}] (* Michael De Vlieger, Apr 27 2016 *)
Table[PrimePi[n] - PrimeNu[n], {n, 50}] (* G. C. Greubel, May 16 2017 *)
PROG
(PARI) A048865(n)=primepi(n)-omega(n)
(Haskell)
a048865 n = sum $ map a010051 [t | t <- [1..n], gcd n t == 1]
-- Reinhard Zumkeller, Sep 16 2011
KEYWORD
nonn
AUTHOR
STATUS
approved