login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073028
a(n) = max{ C(n,0), C(n-1,1), C(n-2,2), ..., C(n-n,n) }.
7
1, 1, 1, 2, 3, 4, 6, 10, 15, 21, 35, 56, 84, 126, 210, 330, 495, 792, 1287, 2002, 3003, 5005, 8008, 12376, 19448, 31824, 50388, 77520, 125970, 203490, 319770, 497420, 817190, 1307504, 2042975, 3268760, 5311735, 8436285, 13123110, 21474180, 34597290
OFFSET
0,4
COMMENTS
lim a(n)/a(n-1) = (1+sqrt(5))/2.
a(n-1) is the max coefficient in n-th Fibonacci polynomial (the polynomial F_0(x) is constant zero, and is not included in this sequence). - Vladimir Reshetnikov, Oct 09 2016
REFERENCES
Peter Boros (borospet(AT)freemail.hu): Lectures on Fibonacci's World at the SOTERIA Foundation, 1999.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..4793
Benjamin Aram Berendsohn, László Kozma, and Dániel Marx, Finding and counting permutations via CSPs, arXiv:1908.04673 [cs.DS], 2019.
Charles Bouillaguet, Boolean Polynomial Evaluation for the Masses, LIP6 Laboratory, Sorbonne Université (Paris, France) Cryptology ePrint Archive (2022) No. 1412.
S. M. Tanny and M. Zuker, On a unimodal sequence of binomial coefficients, Discrete Math. 9 (1974), 79-89.
Eric Weisstein's World of Mathematics, Fibonacci Polynomial.
FORMULA
a(n) = binomial(n-A060065(n), A060065(n)). - Vladeta Jovovic, Jun 16 2004
a(n) ~ 5^(1/4) * phi^(n+1) / sqrt(2*Pi*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 09 2016
EXAMPLE
For n = 6, C(6,0) = 1, C(5,1) = 5, C(4,2) = 6, C(3,3) = 1. These binomial coefficients are the coefficients in the Fibonacci polynomial F_7(x) = x^6 + 5*x^4 + 6*x^2 + 1. The max coefficient is 6, so a(6) = 6.
MATHEMATICA
Table[Max[CoefficientList[Fibonacci[n + 1, x], x]], {n, 1, 30}] (* Vladimir Reshetnikov, Oct 07 2016 *)
PROG
(PARI) a(n)=my(k=(5*n-sqrtint(5*n^2+10*n+9)+6)\10); binomial(n-k, k) \\ Charles R Greathouse IV, Sep 22 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Miklos Kristof, Aug 22 2002
EXTENSIONS
a(0) = 1 prepended by Vladimir Reshetnikov, Oct 09 2016
STATUS
approved