OFFSET
0,3
COMMENTS
Series reversion of Sum_{k>=0} a(k)x^k is x(Sum_{k>=0} A007051(k)x^k).
G.f. A(x) = Sum_{k>=0} a(k)x^k satisfies 0 = x - (4x+1)*A(x) + (3x+2)*A(x)^2.
If A(x)=g.f., then y=x/A(x)-2x satisfies x^2 = y^2 - y.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: (1+4x-sqrt(1+4x^2))/(4+6x).
G.f.: (x-x^2*c(-x^2))/(1+x-x^2*c(-x^2)), c(x) the g.f. of A000108. - Paul Barry, Jun 17 2005
From Gary W. Adamson, Jan 05 2012: (Start)
a(n) is the upper left term of (-1)*M^n, where M = an infinite square production matrix as follows:
-1, -1, 0, 0, 0, 0, ...
-1, 1, -1, 0, 0, 0, ...
-1, 1, 1, -1, 0, 0, ...
-1, 1, 1, 1, -1, 0, ...
-1, 1, 1, 1, 1, -1, ...
... (End)
D-finite with recurrence 2*n*a(n) +3*n*a(n-1) +8*(n-3)*a(n-2) +12*(n-3)*a(n-3)=0. - R. J. Mathar, Nov 24 2012
Lim sup n->infinity |a(n)|^(1/n) = 2. - Vaclav Kotesovec, Feb 09 2014
EXAMPLE
a(5) = 6 = upper left term of (-1)*M^5. - Gary W. Adamson, Jan 05 2012
MATHEMATICA
CoefficientList[Series[(1 + 4 x - Sqrt[1 + 4 x^2])/(4 + 6 x), {x, 0, 50}], x] (* Harvey P. Dale, Mar 24 2011 *)
PROG
(PARI) a(n)=polcoeff((1+4*x-sqrt(1+4*x^2+x*O(x^n)))/(4+6*x), n)
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jul 27 2003
STATUS
approved