login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086990
Expansion of (1+4x-sqrt(1+4x^2))/(4+6x) in powers of x.
4
0, 1, -2, 3, -4, 6, -10, 15, -20, 30, -52, 78, -96, 144, -282, 423, -420, 630, -1660, 2490, -1304, 1956, -11332, 16998, 3896, -5844, -95240, 142860, 157160, -235740, -983610, 1475415, 2634300, -3951450, -11751660, 17627490, 38381160, -57571740
OFFSET
0,3
COMMENTS
Series reversion of Sum_{k>=0} a(k)x^k is x(Sum_{k>=0} A007051(k)x^k).
G.f. A(x) = Sum_{k>=0} a(k)x^k satisfies 0 = x - (4x+1)*A(x) + (3x+2)*A(x)^2.
If A(x)=g.f., then y=x/A(x)-2x satisfies x^2 = y^2 - y.
LINKS
FORMULA
G.f.: (1+4x-sqrt(1+4x^2))/(4+6x).
G.f.: (x-x^2*c(-x^2))/(1+x-x^2*c(-x^2)), c(x) the g.f. of A000108. - Paul Barry, Jun 17 2005
From Gary W. Adamson, Jan 05 2012: (Start)
a(n) is the upper left term of (-1)*M^n, where M = an infinite square production matrix as follows:
-1, -1, 0, 0, 0, 0, ...
-1, 1, -1, 0, 0, 0, ...
-1, 1, 1, -1, 0, 0, ...
-1, 1, 1, 1, -1, 0, ...
-1, 1, 1, 1, 1, -1, ...
... (End)
D-finite with recurrence 2*n*a(n) +3*n*a(n-1) +8*(n-3)*a(n-2) +12*(n-3)*a(n-3)=0. - R. J. Mathar, Nov 24 2012
Lim sup n->infinity |a(n)|^(1/n) = 2. - Vaclav Kotesovec, Feb 09 2014
EXAMPLE
a(5) = 6 = upper left term of (-1)*M^5. - Gary W. Adamson, Jan 05 2012
MATHEMATICA
CoefficientList[Series[(1 + 4 x - Sqrt[1 + 4 x^2])/(4 + 6 x), {x, 0, 50}], x] (* Harvey P. Dale, Mar 24 2011 *)
PROG
(PARI) a(n)=polcoeff((1+4*x-sqrt(1+4*x^2+x*O(x^n)))/(4+6*x), n)
CROSSREFS
Sequence in context: A173473 A288807 A097699 * A090412 A073028 A374763
KEYWORD
sign
AUTHOR
Michael Somos, Jul 27 2003
STATUS
approved