OFFSET
0,2
COMMENTS
Binomial transform of 1+n*(n+1)/2, A000124.
Number of 123-avoiding ternary words of length n-1.
Row sums of triangle A134247. Also double binomial transform of (1, 1, 1, 0, 0, 0, ...). - Gary W. Adamson, Oct 15 2007
Equals row sums of triangle A144333. - Gary W. Adamson, Sep 18 2008
LINKS
P. Braendeen and T. Mansour, Finite automata and pattern avoidance in words
Tosic R., Masulovic D., Stojmenovic I., Brunvoll J., Cyvin B. N. and Cyvin S. J., Enumeration of polyhex hydrocarbons to h = 17, J. Chem. Inf. Comput. Sci., 1995, 35, 181-187, Table 1, with an error at h=16.
Index entries for linear recurrences with constant coefficients, signature (6,-12,8).
FORMULA
From Paul Barry, Jul 22 2004: (Start)
G.f.: (1-3x+3x^2)/(1-2x)^3;
a(n) = 2^(n-3)*(n^2+3n+8). (End)
From Paul Barry, Mar 27 2007: (Start)
E.g.f.: e^(2*x)*(1+x+x^2/2);
a(n) = Sum_{k=0..2} binomial(n,k)*2^(n-k). (End)
MAPLE
MATHEMATICA
Table[Sum[Binomial[m-1, k](#^2/2 -#/2 +1 &)[k+1], {k, 0, m}], {m, 36}]
LinearRecurrence[{6, -12, 8}, {1, 3, 9}, 30] (* Harvey P. Dale, May 15 2019 *)
PROG
(PARI) a(n)=2^(n-3)*(n^2+3*n+8); \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael A. Childers (childers_moof(AT)yahoo.com), Jul 27 2002
EXTENSIONS
Corrected and extended by Wouter Meeussen, Jul 30 2002
Title and offset corrected. - R. J. Mathar, May 21 2018
New name using explicit formula. - Joerg Arndt, May 21 2018
STATUS
approved