login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2^(n-3)*(n^2+3*n+8).
7

%I #35 Feb 06 2022 21:16:43

%S 1,3,9,26,72,192,496,1248,3072,7424,17664,41472,96256,221184,503808,

%T 1138688,2555904,5701632,12648448,27918336,61341696,134217728,

%U 292552704,635437056,1375731712,2969567232,6392119296,13723762688

%N a(n) = 2^(n-3)*(n^2+3*n+8).

%C Binomial transform of 1+n*(n+1)/2, A000124.

%C Number of 123-avoiding ternary words of length n-1.

%C Row sums of triangle A134247. Also double binomial transform of (1, 1, 1, 0, 0, 0, ...). - _Gary W. Adamson_, Oct 15 2007

%C Equals row sums of triangle A144333. - _Gary W. Adamson_, Sep 18 2008

%H P. Braendeen and T. Mansour, <a href="http://arXiv.org/abs/math.CO/0309269">Finite automata and pattern avoidance in words</a>

%H Tosic R., Masulovic D., Stojmenovic I., Brunvoll J., Cyvin B. N. and Cyvin S. J., <a href="http://dx.doi.org/10.1021/ci00024a002">Enumeration of polyhex hydrocarbons to h = 17</a>, J. Chem. Inf. Comput. Sci., 1995, 35, 181-187, Table 1, with an error at h=16.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-12,8).

%F From _Paul Barry_, Jul 22 2004: (Start)

%F G.f.: (1-3x+3x^2)/(1-2x)^3;

%F a(n) = 2^(n-3)*(n^2+3n+8). (End)

%F From _Paul Barry_, Mar 27 2007: (Start)

%F E.g.f.: e^(2*x)*(1+x+x^2/2);

%F a(n) = Sum_{k=0..2} binomial(n,k)*2^(n-k). (End)

%F a(n-1) + A001788(n-2) = A104270(n). - _R. J. Mathar_, May 21 2018

%p A072863 := proc(n)

%p 2^(n-3)*(n^2+3*n+8) ;

%p end proc: # _R. J. Mathar_, May 21 2018

%t Table[Sum[Binomial[m-1, k](#^2/2 -#/2 +1 &)[k+1], {k, 0, m}], {m, 36}]

%t LinearRecurrence[{6,-12,8},{1,3,9},30] (* _Harvey P. Dale_, May 15 2019 *)

%o (PARI) a(n)=2^(n-3)*(n^2+3*n+8); \\ _Charles R Greathouse IV_, Oct 07 2015

%Y Cf. A134247, A000124, A144333.

%K nonn,easy

%O 0,2

%A Michael A. Childers (childers_moof(AT)yahoo.com), Jul 27 2002

%E Corrected and extended by _Wouter Meeussen_, Jul 30 2002

%E Title and offset corrected. - _R. J. Mathar_, May 21 2018

%E New name using explicit formula. - _Joerg Arndt_, May 21 2018