login
A070801
Largest prime <= sigma(n): a(n) = prevprime(sigma(n)), where prevprime(n) = A007917(n), the largest prime less than or equal to n.
10
3, 3, 7, 5, 11, 7, 13, 13, 17, 11, 23, 13, 23, 23, 31, 17, 37, 19, 41, 31, 31, 23, 59, 31, 41, 37, 53, 29, 71, 31, 61, 47, 53, 47, 89, 37, 59, 53, 89, 41, 89, 43, 83, 73, 71, 47, 113, 53, 89, 71, 97, 53, 113, 71, 113, 79, 89, 59, 167, 61, 89, 103, 127, 83, 139, 67, 113, 89
OFFSET
2,1
COMMENTS
Largest integer k such that A000203(k) <= A000203(n)+1. - Antti Karttunen, Nov 07 2017, after Benoit Cloitre's Mar 17 2002 comment in A007917.
LINKS
FORMULA
a(n) = A000040(A000720(sigma(n))) = A007917(A000203(n)).
From Reinhard Zumkeller, Jun 26 2003: (Start)
A085379(n) <= a(n).
a(A085380(n)) = A085379(A085380(n)).
a(A085381(n)) > A085379(A085381(n)).
a(A023194(n)) = A000203(A023194(n)). (End)
EXAMPLE
For n=100: sigma(100) = 217, prevprime(217) = 211 = a(100).
MATHEMATICA
Table[Prime[PrimePi[DivisorSigma[1, w]]], {w, 2, 128}]
Table[NextPrime[DivisorSigma[1, n] + 1, -1], {n, 2, 128}] (* Amiram Eldar, Mar 01 2024 *)
PROG
(PARI) A070801(n) = precprime(sigma(n)); \\ Antti Karttunen, Nov 07 2017
(Scheme) (define (A070801 n) (let ((s1 (+ 1 (A000203 n)))) (let loop ((k s1)) (if (<= (A000203 k) s1) k (loop (- k 1)))))) ;; (For code of A000203, see under that entry). Antti Karttunen, Nov 07 2017
KEYWORD
easy,nonn
AUTHOR
Labos Elemer, May 08 2002
STATUS
approved