

A070799


Numbers of the form 6jkjk.


2



4, 9, 14, 19, 20, 24, 29, 31, 34, 39, 42, 44, 48, 49, 53, 54, 59, 64, 65, 69, 74, 75, 79, 82, 84, 86, 88, 89, 94, 97, 99, 104, 108, 109, 111, 114, 116, 119, 124, 129, 130, 133, 134, 139, 140, 141, 144, 149, 150, 152, 154, 157, 159, 163, 164, 167, 169, 174, 179, 180
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Equivalently, numbers n such that 6n+1 has a factor == 5 (mod 6).
These numbers, together with numbers of the form 6jk+j+k (A070043) are the numbers n for which 6n+1 is composite (A046954). If we also add in the numbers of the form 6jk+jk (A046953), we get the numbers n such that 6n1 and 6n+1 do not form a pair of twin primes (A067611).


LINKS

Table of n, a(n) for n=1..60.


EXAMPLE

31 = 6*2*3  2  3. Equivalently, 6*31+1 = (6*21)*(6*31).


MATHEMATICA

Select[Range[250], MemberQ[Mod[Take[Divisors[6#+1], {2, 2}], 6], 5]&]


CROSSREFS

Cf. A070043, A046953, A046954, A067611.
Sequence in context: A100213 A043365 A023738 * A277548 A031474 A045203
Adjacent sequences: A070796 A070797 A070798 * A070800 A070801 A070802


KEYWORD

nonn


AUTHOR

Jon Perry, May 05 2002


EXTENSIONS

Edited by Dean Hickerson, May 07 2002


STATUS

approved



