login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070531
Generalized Bell numbers B_{4,3}.
3
1, 73, 16333, 8030353, 7209986401, 10541813012041, 23227377813664333, 72925401604382826913, 312727862321385812968033, 1772004571987390827615327241, 12917715377912025572750844722221, 118521774439119390334062953438350513, 1343761301099219856651740487814621053313
OFFSET
1,2
LINKS
P. Blasiak, Karol A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
P. Blasiak, Karol A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
FORMULA
In Maple notation, a(n) = (1/12)*n!*(n+1)!*(n+2)!*hypergeom([n+1, n+2, n+3], [2, 3, 4], 1)/exp(1).
a(n) = Sum_{k=3..3*n} A090440(n, k) = (Sum_{k>=3} (1/k!)*Product_{j=1..n} fallfac(k+(j-1)*(4-3), 3))/exp(1), n>=1. From eq.(9) of the Blasiak et al. reference with r=4, s=3. fallfac(n, m) := A008279(n, m) (falling factorials triangle). a(0) := 1 may be added.
MATHEMATICA
ff[n_, k_] = Pochhammer[n - k + 1, k]; a[1, 3] = 1; a[n_, k_] := a[n, k] = Sum[Binomial[3, p]*ff[(n - 1 - p + k), 3 - p]*a[n - 1, k - p], {p, 0, 3} ]; a[n_ /; n < 2, _] = 0; Table[Sum[a[n, k] , {k, 3, 3 n}], {n, 1, 9}] (* Jean-François Alcover, Sep 01 2011 *)
CROSSREFS
Cf. A091028 (alternating row sums of A090440).
Sequence in context: A364301 A210382 A091757 * A274591 A232293 A351800
KEYWORD
nonn,changed
AUTHOR
Karol A. Penson, May 02 2002
EXTENSIONS
Edited by Wolfdieter Lang, Dec 23 2003
STATUS
approved