login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Generalized Bell numbers B_{4,3}.
3

%I #28 Jan 09 2025 04:24:09

%S 1,73,16333,8030353,7209986401,10541813012041,23227377813664333,

%T 72925401604382826913,312727862321385812968033,

%U 1772004571987390827615327241,12917715377912025572750844722221,118521774439119390334062953438350513,1343761301099219856651740487814621053313

%N Generalized Bell numbers B_{4,3}.

%H G. C. Greubel, <a href="/A070531/b070531.txt">Table of n, a(n) for n = 1..200</a>

%H P. Blasiak, Karol A. Penson and A. I. Solomon, <a href="http://www.arXiv.org/abs/quant-ph/0402027">The general boson normal ordering problem</a>, arXiv:quant-ph/0402027, 2004.

%H P. Blasiak, Karol A. Penson and A. I. Solomon, <a href="http://dx.doi.org/10.1016/S0375-9601(03)00194-4">The general boson normal ordering problem</a>, Phys. Lett. A 309 (2003) 198-205.

%H M. Schork, <a href="http://dx.doi.org/10.1088/0305-4470/36/16/314">On the combinatorics of normal ordering bosonic operators and deforming it</a>, J. Phys. A 36 (2003) 4651-4665.

%F In Maple notation, a(n) = (1/12)*n!*(n+1)!*(n+2)!*hypergeom([n+1, n+2, n+3], [2, 3, 4], 1)/exp(1).

%F a(n) = Sum_{k=3..3*n} A090440(n, k) = (Sum_{k>=3} (1/k!)*Product_{j=1..n} fallfac(k+(j-1)*(4-3), 3))/exp(1), n>=1. From eq.(9) of the Blasiak et al. reference with r=4, s=3. fallfac(n, m) := A008279(n, m) (falling factorials triangle). a(0) := 1 may be added.

%t ff[n_, k_] = Pochhammer[n - k + 1, k]; a[1, 3] = 1; a[n_, k_] := a[n, k] = Sum[Binomial[3, p]*ff[(n - 1 - p + k), 3 - p]*a[n - 1, k - p], {p, 0, 3} ]; a[n_ /; n < 2, _] = 0; Table[Sum[a[n, k] , {k, 3, 3 n}], {n, 1, 9}] (* _Jean-François Alcover_, Sep 01 2011 *)

%Y Cf. A091028 (alternating row sums of A090440).

%K nonn,changed

%O 1,2

%A _Karol A. Penson_, May 02 2002

%E Edited by _Wolfdieter Lang_, Dec 23 2003