The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070532 a(n) = n^4 mod 14. 1
 0, 1, 2, 11, 4, 9, 8, 7, 8, 9, 4, 11, 2, 1, 0, 1, 2, 11, 4, 9, 8, 7, 8, 9, 4, 11, 2, 1, 0, 1, 2, 11, 4, 9, 8, 7, 8, 9, 4, 11, 2, 1, 0, 1, 2, 11, 4, 9, 8, 7, 8, 9, 4, 11, 2, 1, 0, 1, 2, 11, 4, 9, 8, 7, 8, 9, 4, 11, 2, 1, 0, 1, 2, 11, 4, 9, 8, 7, 8, 9, 4, 11, 2, 1, 0, 1, 2, 11, 4, 9, 8, 7, 8, 9, 4, 11, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Equivalently: n^(6*m + 4) mod 14. - G. C. Greubel, Apr 01 2016 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA From G. C. Greubel, Apr 01 2016: (Start) a(n+14) = a(n). a(14*m) = 0. a(2*n) = 2*A070512(n). G.f.: (x +2*x^2 +11*x^3 +4*x^4 +9*x^5 +8*x^6 +7*x^7 +8*x^8 +9*x^9 +4*x^10 +11*x^11 +2*x^12 +x^13)/(1 - x^14). (End) MATHEMATICA PowerMod[Range[0, 100], 4, 14] (* G. C. Greubel, Apr 01 2016 *) PROG (Sage) [power_mod(n, 4, 14)for n in range(0, 97)] # Zerinvary Lajos, Oct 31 2009 (Magma) [Modexp(n, 4, 14): n in [0..100]]; // Vincenzo Librandi, Apr 02 2016 (PARI) a(n)=n^4%14 \\ Charles R Greathouse IV, Apr 06 2016 CROSSREFS Cf. A070512. Sequence in context: A070840 A235460 A082264 * A038217 A152985 A257112 Adjacent sequences: A070529 A070530 A070531 * A070533 A070534 A070535 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, May 13 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 04:45 EST 2022. Contains 358422 sequences. (Running on oeis4.)