login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070392
a(n) = 6^n mod 11.
4
1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7
OFFSET
0,2
COMMENTS
Period 10 (Repeat): [1, 6, 3, 7, 9, 10, 5, 8, 4, 2, ...]. The sequence contains every number from 1 to 10 and only those numbers. - Wesley Ivan Hurt, May 19 2014
FORMULA
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-1) - a(n-5) + a(n-6).
G.f.: ( -1-5*x+3*x^2-4*x^3-2*x^4-2*x^5 )/((x-1)*(1+x)(x^4-x^3+x^2-x+1) ). (End)
a(n) = a(n-10). - G. C. Greubel, Mar 18 2016
MAPLE
A070392:=n->(6^n mod 11); seq(A070392(n), n=0..100); # Wesley Ivan Hurt, May 19 2014
MATHEMATICA
Table[Mod[6^n, 11], {n, 0, 100}] (* Wesley Ivan Hurt, May 19 2014 *)
PowerMod[6, Range[0, 50], 11] (* G. C. Greubel, Mar 18 2016 *)
PROG
(Sage) [power_mod(6, n, 11)for n in range(0, 99)] # Zerinvary Lajos, Nov 26 2009
(PARI) a(n)=6^n%11 \\ Charles R Greathouse IV, Oct 07 2015
(PARI) a(n) = lift(Mod(6, 11)^n); \\ Altug Alkan, Mar 18 2016
CROSSREFS
Sequence in context: A125123 A133612 A221149 * A248268 A115371 A371376
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 12 2002
STATUS
approved