Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Dec 07 2019 12:18:23
%S 1,6,3,7,9,10,5,8,4,2,1,6,3,7,9,10,5,8,4,2,1,6,3,7,9,10,5,8,4,2,1,6,3,
%T 7,9,10,5,8,4,2,1,6,3,7,9,10,5,8,4,2,1,6,3,7,9,10,5,8,4,2,1,6,3,7,9,
%U 10,5,8,4,2,1,6,3,7,9,10,5,8,4,2,1,6,3,7
%N a(n) = 6^n mod 11.
%C Period 10 (Repeat): [1, 6, 3, 7, 9, 10, 5, 8, 4, 2, ...]. The sequence contains every number from 1 to 10 and only those numbers. - _Wesley Ivan Hurt_, May 19 2014
%H G. C. Greubel, <a href="/A070392/b070392.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,-1,1). - _R. J. Mathar_, Apr 20 2010
%F From _R. J. Mathar_, Apr 20 2010: (Start)
%F a(n) = a(n-1) - a(n-5) + a(n-6).
%F G.f.: ( -1-5*x+3*x^2-4*x^3-2*x^4-2*x^5 )/((x-1)*(1+x)(x^4-x^3+x^2-x+1) ). (End)
%F a(n) = a(n-10). - _G. C. Greubel_, Mar 18 2016
%p A070392:=n->(6^n mod 11); seq(A070392(n), n=0..100); # _Wesley Ivan Hurt_, May 19 2014
%t Table[Mod[6^n, 11], {n, 0, 100}] (* _Wesley Ivan Hurt_, May 19 2014 *)
%t PowerMod[6, Range[0, 50], 11] (* _G. C. Greubel_, Mar 18 2016 *)
%o (Sage) [power_mod(6,n,11)for n in range(0,99)] # _Zerinvary Lajos_, Nov 26 2009
%o (PARI) a(n)=6^n%11 \\ _Charles R Greathouse IV_, Oct 07 2015
%o (PARI) a(n) = lift(Mod(6, 11)^n); \\ _Altug Alkan_, Mar 18 2016
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, May 12 2002