The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A069925 a(n) = phi(2^n+1)/(2*n). 2
 1, 1, 1, 2, 2, 4, 6, 16, 18, 40, 62, 160, 210, 448, 660, 2048, 2570, 5184, 9198, 24672, 32508, 76032, 121574, 344064, 405000, 1005888, 1569780, 4511520, 6066336, 12672000, 23091222, 67004160, 85342752, 200422656, 289531200, 892477440 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Number of primitive self-reciprocal polynomials of degree 2*n over GF(2). - Joerg Arndt, Jul 04 2012 LINKS Amiram Eldar, Table of n, a(n) for n = 1..1090 Joerg Arndt, Matters Computational (The Fxtbook), section 40.8 "Self-reciprocal polynomials", pp. 846-848. Helmut Meyn and Werner Götz, Self-reciprocal Polynomials Over Finite Fields, Séminaire Lotharingien de Combinatoire, B21d, pp. 82-90, 1989. FORMULA a(n) = phi(2^n+1)/(2*n). a(n) = A053285(n)/(2*n). - Amiram Eldar, Jun 02 2022 MATHEMATICA Table[EulerPhi[2^n+1]/(2n), {n, 50}] (* Harvey P. Dale, Nov 15 2011 *) PROG (PARI) a(n) = eulerphi(2^n+1)/(2*n); /* Joerg Arndt, Jul 04 2012 */ CROSSREFS Cf. A011260 (degree-n primitive polynomials). Cf. A000048 (degree-2*n irreducible self-reciprocal polynomials). Cf. A000010, A000051, A053285. Sequence in context: A153961 A134041 A358366 * A357951 A227315 A080611 Adjacent sequences: A069922 A069923 A069924 * A069926 A069927 A069928 KEYWORD easy,nonn AUTHOR Benoit Cloitre, Apr 25 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 08:24 EDT 2024. Contains 373393 sequences. (Running on oeis4.)