The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A134041 a(n) = number of binary partitions of the Fibonacci number F(n). 1
 1, 2, 2, 4, 6, 14, 36, 114, 450, 2268, 14442, 118686, 1264678, 17519842, 318273566, 7607402556, 240151303078, 10055927801538, 559859566727028, 41582482495661986, 4129785050606801246, 549628445573614296188, 98256218721544814784486, 23631541930531250077261282 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..125 FORMULA a(n) = A000123( A000045(n) ) for n>=0. MAPLE g:= proc(b, n) option remember; local t; if b<0 then 0 elif b=0 or n=0 then 1 elif b>=n then add(g(b-t, n) *binomial(n+1, t) *(-1)^(t+1), t=1..n+1) else g(b-1, n) +g(2*b, n-1) fi end: f:= proc(n) local t; t:= ilog2(2*n+1); g(n/2^(t-1), t) end: a:= n-> f(combinat[fibonacci](n)): seq(a(n), n=0..25); # Alois P. Heinz, Sep 26 2011 MATHEMATICA g[b_, n_] := g[b, n] = If[b < 0, 0, If[b == 0 || n == 0, 1, If[b >= n, Sum[g[b - t, n] Binomial[n + 1, t] (-1)^(t + 1), {t, 1, n + 1}], g[b - 1, n] + g[2b, n - 1]]]]; f[n_] := With[{t = Floor@Log[2, 2n + 1]}, g[n/2^(t - 1), t]]; a[n_] := f[Fibonacci[n]]; a /@ Range[0, 25] (* Jean-François Alcover, Nov 19 2020, after Alois P. Heinz *) CROSSREFS Cf. A000123, A000045. Sequence in context: A276057 A116637 A153961 * A358366 A069925 A357951 Adjacent sequences: A134038 A134039 A134040 * A134042 A134043 A134044 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 02 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 23:28 EDT 2024. Contains 373691 sequences. (Running on oeis4.)