login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134041
a(n) = number of binary partitions of the Fibonacci number F(n).
1
1, 2, 2, 4, 6, 14, 36, 114, 450, 2268, 14442, 118686, 1264678, 17519842, 318273566, 7607402556, 240151303078, 10055927801538, 559859566727028, 41582482495661986, 4129785050606801246, 549628445573614296188, 98256218721544814784486, 23631541930531250077261282
OFFSET
0,2
LINKS
FORMULA
a(n) = A000123( A000045(n) ) for n>=0.
MAPLE
g:= proc(b, n) option remember; local t; if b<0 then 0 elif b=0 or n=0 then 1 elif b>=n then add(g(b-t, n) *binomial(n+1, t) *(-1)^(t+1), t=1..n+1) else g(b-1, n) +g(2*b, n-1) fi end: f:= proc(n) local t; t:= ilog2(2*n+1); g(n/2^(t-1), t) end: a:= n-> f(combinat[fibonacci](n)): seq(a(n), n=0..25); # Alois P. Heinz, Sep 26 2011
MATHEMATICA
g[b_, n_] := g[b, n] = If[b < 0, 0, If[b == 0 || n == 0, 1, If[b >= n, Sum[g[b - t, n] Binomial[n + 1, t] (-1)^(t + 1), {t, 1, n + 1}], g[b - 1, n] + g[2b, n - 1]]]];
f[n_] := With[{t = Floor@Log[2, 2n + 1]}, g[n/2^(t - 1), t]];
a[n_] := f[Fibonacci[n]];
a /@ Range[0, 25] (* Jean-François Alcover, Nov 19 2020, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A276057 A116637 A153961 * A358366 A069925 A357951
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 02 2007
STATUS
approved