The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A116637 G.f. satisfies: A(x) = x/series_reversion(x/G(x)) where A(x) + A(-x) = 2*G(x^2) and G(x) is the g.f. of A046646. 2
1, 2, 2, 4, 6, 14, 24, 60, 110, 286, 546, 1456, 2856, 7752, 15504, 42636, 86526, 240350, 493350, 1381380, 2861430, 8064030, 16829280, 47682960, 100134216, 284997384, 601661144, 1719031840, 3645533040, 10450528048, 22249511328, 63967345068 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
a(2*n+1) = 2*(3*n+1)!/((n+1)!*(2*n+1)!) = 2*A006013(n), with a(0)=1 and a(2*n+2) = 2*(3*n+3)!/((n+1)!*(2*n+3)!) = 2*A001764(n+1).
G.f. satisfies: A(x) = G(x/A(x)) and A(x*G(x)) = G(x), where G(x) is the g.f. of A046646.
G.f. satisfies: A(x) = 1/A(-x) since log(A(x)) = Sum_{n>=0} 2*A006013(n)*(n+1)/(2n+1)*x^(2n+1) is an odd function.
G.f.: (1+v)/(1-v) where v=2*sqrt(3)*sin(asin(3*sqrt(3)*x/2)/3)/3. - Paul Barry, Jul 07 2007
Conjecture: 4*n*(n+1)*(3*n-1)*a(n) -36*n*a(n-1) -3*(3*n-5)*(3*n+2)*(3*n-4)*a(n-2)=0. - R. J. Mathar, Jun 22 2016
EXAMPLE
A(x) = 1 + 2*x + 2*x^2 + 4*x^3 + 6*x^4 + 14*x^5 + 24*x^6 + 60*x^7 +...
log(A(x)) = 1*2*x + 2*4/3*x^3 + 7*6/5*x^5 + 30*8/7*x^7 + 143*10/9*x^9 +...
MATHEMATICA
k := Floor[(n - 1)/2]; Table[If[n == 0, 1, If[Mod[n, 2] == 1, 2*(3*k + 1)!/((k + 1)!*(2*k + 1)!), 2*(3*k + 3)!/((k + 1)!*(2*k + 3)!)]], {n, 0, 50}] (* G. C. Greubel, Nov 21 2017 *)
PROG
(PARI) {a(n)=local(k=(n-1)\2); if(n==0, 1, if(n%2==1, 2*(3*k+1)!/((k+1)!*(2*k+1)!), 2*(3*k+3)!/((k+1)!*(2*k+3)!)))}
for(n=0, 40, print1(a(n), ", "))
(PARI) {a(n)=if(n<1, n==0, 2*(n+n\2)!/ (n\2+n%2)!/ (n+1-(n%2))!)} /* Michael Somos, Feb 22 2006 */
CROSSREFS
Sequence in context: A061894 A116684 A276057 * A153961 A134041 A358366
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 19 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 18 14:18 EDT 2024. Contains 373481 sequences. (Running on oeis4.)