login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069837
Smallest prime which is a concatenation of n primes.
5
2, 23, 223, 2237, 22273, 222323, 2222273, 22222223, 222222227, 2222222377, 22222222223, 222222223273, 2222222222273, 22222222222327, 222222222222227, 2222222222222533, 22222222222223557, 222222222222222577, 2222222222222222327, 22222222222222222253, 222222222222222222277, 2222222222222222222273, 22222222222222222222327
OFFSET
1,1
COMMENTS
Conjecture: For every n there exists an n-digit prime which is composed of the digits 2,3,5 and 7. I.e., no prime > 7 is required in this concatenation. I.e., a(n) of A069637 contains exactly n digits. This is a weaker conjecture than the one by Patrick De Geest in A036937.
If the conjecture is true then this also gives the smallest n-digit prime with prime digits. - Amarnath Murthy, Apr 02 2003
Except for the first term, A096506 lists indices n=2,3,8,11,36,95,101,128,... for which a(n) is of the form 2...23. - M. F. Hasler, Apr 25 2008
LINKS
MATHEMATICA
f[n_] := Block[{p = 2(10^n - 1)/9}, While[ !PrimeQ[p] || Union[ PrimeQ[ IntegerDigits[p]]] != {True}, p++ ]; p]; Table[ f[n], {n, 1, 20}]
PROG
(PARI) A069837(n)={ local( p=(10^n-1)\9*2-1 ); n=Vec("2357"); until( !setminus( Set(Vec(Str(p))), n), p=nextprime(p+1)); p } /* a more efficient version should check digits one by one and skip to the next possible candidate (i.e., add 12...23 - p%10^d) when a nonprime digit is found */ \\ M. F. Hasler, Apr 25 2008
CROSSREFS
Cf. A036937.
Cf. A096506.
Sequence in context: A068167 A030456 A357436 * A376434 A069629 A069614
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Apr 16 2002
EXTENSIONS
Edited, corrected and extended by Robert G. Wilson v, Apr 22 2002
STATUS
approved