login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A069651 For n >= 1, let M_n be the n X n matrix with M_n(i,j)=i^2/(i+j); then a(n)=1/det(M_n). Also a(0) = 1 by convention. 3
1, 2, 18, 1200, 735000, 4667544000, 332086420512000, 279394363051195392000, 2892376010829659126572800000, 379850021025259936655866602240000000, 648304836222110631242066578424390188032000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Also, determinant of the inverse of the (n+1)-st Hilbert matrix, divided by (2n+1)!. - Robert G. Wilson v, Feb 02 2004

LINKS

Table of n, a(n) for n=0..10.

FORMULA

a(n) = A005249(n)/A000142(n). - Robert G. Wilson v, Feb 02 2004

a(n) = (n+1)!/(2*n+1)! * Product[Binomial(i,Floor(i/2)), {i,1,2*n+1}]. - Stefan Steinerberger, Feb 26 2008

a(n) = A163085(2*n+1)/(2*n+1)! = A163085(2*n)/factorial(n)^2. - Peter Luschny, Sep 18 2012

MATHEMATICA

Table[1/((2n - 1)!Det[Table[1/(i + j - 1), {i, n}, {j, n}]]), {n, 10}] (* Robert G. Wilson v, Feb 02 2004 *)

Table[(n + 1)!/(2*n + 1)!*Product[Binomial[i, Floor[i/2]], {i, 1, 2*n + 1}], {n, 0, 10}] (* Stefan Steinerberger, Feb 26 2008 *)

PROG

(PARI) for(n=1, 15, print1(1/matdet(matrix(n, n, i, j, i^2/(j+i))), ", "))

(Sage)

def A069651(n): return A163085(2*n+1)/factorial(2*n+1)

[A069651(n) for n in (0..10)] # Peter Luschny, Sep 18 2012

CROSSREFS

Sequence in context: A203421 A139111 A090766 * A123558 A278170 A155206

Adjacent sequences:  A069648 A069649 A069650 * A069652 A069653 A069654

KEYWORD

easy,nonn

AUTHOR

Benoit Cloitre, Apr 21 2002

EXTENSIONS

Edited by N. J. A. Sloane, Feb 25 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 19:03 EST 2016. Contains 278948 sequences.