login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A069651 For n >= 1, let M_n be the n X n matrix with M_n(i,j)=i^2/(i+j); then a(n)=1/det(M_n). Also a(0) = 1 by convention. 3
1, 2, 18, 1200, 735000, 4667544000, 332086420512000, 279394363051195392000, 2892376010829659126572800000, 379850021025259936655866602240000000, 648304836222110631242066578424390188032000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Also, determinant of the inverse of the (n+1)-st Hilbert matrix, divided by (2n+1)!. - Robert G. Wilson v, Feb 02 2004

LINKS

Table of n, a(n) for n=0..10.

FORMULA

a(n) = A005249(n)/A000142(n). - Robert G. Wilson v, Feb 02 2004

a(n) = (n+1)!/(2*n+1)! * Product[Binomial(i,Floor(i/2)), {i,1,2*n+1}] - Stefan Steinerberger, Feb 26 2008

a(n) = A163085(2*n+1)/(2*n+1)! = A163085(2*n)/factorial(n)^2. - Peter Luschny, Sep 18 2012

MATHEMATICA

Table[1/((2n - 1)!Det[Table[1/(i + j - 1), {i, n}, {j, n}]]), {n, 10}] - Robert G. Wilson v, Feb 02 2004

Table[(n + 1)!/(2*n + 1)!*Product[Binomial[i, Floor[i/2]], {i, 1, 2*n + 1}], {n, 0, 10}] - Stefan Steinerberger, Feb 26 2008

PROG

(PARI) for(n=1, 15, print1(1/matdet(matrix(n, n, i, j, i^2/(j+i))), ", "))

(Sage)

def A069651(n): return A163085(2*n+1)/factorial(2*n+1)

[A069651(n) for n in (0..10)] # Peter Luschny, Sep 18 2012

CROSSREFS

Sequence in context: A203421 A139111 A090766 * A123558 A155206 A076954

Adjacent sequences:  A069648 A069649 A069650 * A069652 A069653 A069654

KEYWORD

easy,nonn

AUTHOR

Benoit Cloitre, Apr 21 2002

EXTENSIONS

Edited by N. J. A. Sloane, Feb 25 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 18 04:10 EDT 2014. Contains 240688 sequences.