

A069213


a(n) = nth positive integer relatively prime to n.


17



1, 3, 4, 7, 6, 17, 8, 15, 13, 23, 12, 35, 14, 31, 28, 31, 18, 53, 20, 49, 37, 47, 24, 71, 31, 55, 40, 65, 30, 109, 32, 63, 53, 71, 51, 107, 38, 79, 62, 99, 42, 145, 44, 95, 83, 95, 48, 143, 57, 123, 80, 111, 54, 161, 74, 129, 89, 119, 60, 223, 62, 127, 109, 127, 87, 217
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Smallest k such there are exactly n integers among (1,2,3,4,...,k) relatively prime to n.  Benoit Cloitre, Jun 09 2002


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000


FORMULA

a(p) = p+1, p is a prime, a(2^n)= 2^(n+1)  1. What are a(pq), a(pqr), a(n) where n the product of first k primes?  Amarnath Murthy, Nov 14 2002
Let the remainder when n is divided by phi(n) be r and the quotient be k. I.e., n = k*phi(n) + r. Then k*n + r < a(n) < (k+1)*n. If the phi(n) numbers be arranged in increasing order and if the rth number is m then a(n) = k*n + m.  Amarnath Murthy, Jul 07 2002


EXAMPLE

6 is relatively prime to 1, 5, 7, 11, 13, 17,..., the 6th term of this sequence being 17, so a(6) = 17.


MATHEMATICA

f[n_] := Block[{c = 0, k = 1}, While[c < n, If[CoprimeQ[k, n], c++ ]; k++ ]; k  1]; Array[f, 66] (* Robert G. Wilson v, Sep 10 2008 *)


PROG

(PARI) for(n=1, 100, s=1; while(sum(i=1, s, if(gcd(n, i)1, 0, 1))<n, s++); print1(s, ", "))
(Haskell)
a069213 = last . a077581_row  Reinhard Zumkeller, Sep 26 2014


CROSSREFS

Final term of nth row of A077581.
Cf. A077582.
Cf. A247798, A247815.
Sequence in context: A323243 A244974 A077580 * A130700 A117134 A095001
Adjacent sequences: A069210 A069211 A069212 * A069214 A069215 A069216


KEYWORD

nonn


AUTHOR

Leroy Quet, Apr 11 2002


STATUS

approved



