The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A117134 Greatest k such that n^k divides (n^2)!. 1
 3, 4, 7, 6, 17, 8, 21, 20, 24, 12, 70, 14, 32, 55, 63, 18, 80, 20, 99, 73, 48, 24, 191, 78, 56, 121, 130, 30, 224, 32, 204, 108, 72, 203, 323, 38, 80, 126, 398, 42, 293, 44, 193, 505, 96, 48, 575, 200, 312, 162, 225, 54, 485, 302, 522, 180, 120, 60, 898, 62, 128, 660, 682 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS If p is prime, a(p) = p+1, a(p^2) = floor((p^3 + p^2 + p + 1)/2). REFERENCES Thread "100!" in rec.puzzles newsgroup, April 2007 LINKS Robert Israel, Table of n, a(n) for n = 2..10000 (n=2..103 from Vincenzo Librandi) EXAMPLE a(3)=4 because (3^2)! = 362880 = 3^4 * 4480 and 4480 is not divisible by 3. MAPLE seq(ordp((n^2)!, n), n=2..50); # Alternative: f:= proc(n) local F, m, t, v, j; F:= ifactors(n)[2]; m:= infinity; for t in F do v:= add(floor(n^2/t[1]^j), j=1..ceil(log[t[1]](n^2))); m:= min(m, floor(v/t[2])); od; m end proc: map(f, [\$2..100]); # Robert Israel, Feb 26 2019 MATHEMATICA gkn[n_]:=Module[{c=(n^2)!, k}, k=Floor[Log[c]/Log[n]]; While[!Divisible[ c, n^k], k--]; k]; Array[gkn, 70, 2] (* Harvey P. Dale, Sep 14 2012 *) CROSSREFS Cf. A011776. Sequence in context: A077580 A069213 A130700 * A334127 A095001 A344458 Adjacent sequences: A117131 A117132 A117133 * A117135 A117136 A117137 KEYWORD nonn,look AUTHOR Robert Israel, Apr 26 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 18:51 EDT 2024. Contains 373532 sequences. (Running on oeis4.)