login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069119
Numbers n such that n!*Sum_{i=1..n} 1/(i*2^i) is an integer.
2
3, 7, 15, 23, 31, 47, 63, 79, 87, 95, 127, 143, 151, 159, 186, 191, 215, 223, 255, 271, 279, 287, 319, 343, 351, 383, 415, 447, 471, 511, 527, 535, 543, 575, 599, 607, 639, 671, 698, 703, 727, 767, 799, 831, 895, 959, 964, 1023, 1039, 1047, 1055, 1087, 1111
OFFSET
1,1
COMMENTS
m is in this list if and only if v_2(d) + s_2(m) <= m where v_2(d) is the 2-adic valuation of the denominator of sum(i=1..n, 1/(i*2^i)) and s_2(m) is the sum of the digits in the expansion of m in base 2. - Peter Luschny, May 19 2014
LINKS
Robert Israel and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 220 terms from Israel)
A. Straub, V. H. Moll, T. Amdeberhan, The p-adic valuation of k-central binomial coefficients, arXiv:0811.2028 [math.NT], 2008.
Nicolas Wider, Integrality of factorial ratios, Master's Thesis ETH Zürich, 2012.
Wadim Zudilin, Integer-valued factorial ratios, MathOverflow question 26336, 2010.
EXAMPLE
3 is in the sequence because 3!*(1/1/2^1 + 1/2/2^2 + 1/3/2^3) = 4 is an integer. - Robert Israel, May 18 2014
MAPLE
select(k -> type(k!*add(1/i/2^i, i=1..k), integer), [$1..10000]); # Robert Israel, May 18 2014
MATHEMATICA
Select[Range[2000], IntegerQ[#!*Sum[1/(i*2^i), {i, 1, #}]]&] (* Jean-François Alcover, Jul 14 2018 *)
PROG
(Sage)
def is_A069119(n):
s = add(1/(i*2^i) for i in (1..n))
vf = n - sum(ZZ(n).digits(base=2))
return valuation(denominator(s), 2) <= vf
filter(is_A069119, range(1112)) # Peter Luschny, May 19 2014
(PARI) sm(n)=my(s, o); forstep(i=n, 1, -1, o=-valuation(s+=1/(i<<i), 2); if(i+#binary(i)-1<o, return(o))); o
is(n)=hammingweight(n)+sm(n) <= n \\ Charles R Greathouse IV, May 19 2014
CROSSREFS
Cf. A069120.
Sequence in context: A165469 A160160 A192122 * A261413 A187220 A067317
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Apr 07 2002
STATUS
approved