login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A069121 a(n) = n^4*binomial(2n,n). 1
0, 2, 96, 1620, 17920, 157500, 1197504, 8240232, 52715520, 318995820, 1847560000, 10328229912, 56073378816, 297051536600, 1541119305600, 7852824450000, 39392404439040, 194905125100620, 952671403252800 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 386.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

FORMULA

Sum_{n>=1} 1/a(n) = 17*Pi^4/3240. (Comtet, 1974)

a(n) = a(n-1)*(4*n-2)*n^3/(n-1)^4, n>1. - Michael Somos, Apr 18 2003

Equals A002736*n^2. - Zerinvary Lajos, May 28 2006

From Ilya Gutkovskiy, Feb 07 2017: (Start)

G.f.: 2*x*(1 + 30*x + 72*x^2 + 8*x^3)/(1 - 4*x)^(9/2).

a(n) ~ 4^n*n^(7/2)/sqrt(Pi). (End)

MAPLE

with(combinat):for n from 0 to 18 do printf(`%d, `, n^3*sum(binomial(2*n, n), k=1..n)) od: # Zerinvary Lajos, Mar 13 2007

MATHEMATICA

Table[n^4*Binomial[2 n, n], {n, 0, 18}] (* or *)

CoefficientList[Series[2 x (1 + 30 x + 72 x^2 + 8 x^3)/(1 - 4 x)^(9/2), {x, 0, 18}], x] (* Michael De Vlieger, Feb 07 2017 *)

PROG

(PARI) a(n)=if(n<1, 0, n^4*binomial(2*n, n))

CROSSREFS

Cf. A002736.

Sequence in context: A266831 A281029 A282436 * A157065 A123115 A119696

Adjacent sequences:  A069118 A069119 A069120 * A069122 A069123 A069124

KEYWORD

easy,nonn

AUTHOR

Benoit Cloitre, Apr 07 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 25 22:37 EST 2021. Contains 341618 sequences. (Running on oeis4.)