login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068597
Barriers for bigomega(n): numbers n such that, for all m < n, m + bigomega(m) <= n.
1
2, 3, 4, 6, 8, 12, 24, 48, 60, 108, 168, 264, 348, 360, 384, 480, 720, 864, 888, 1020, 1320, 1440, 2040, 2064, 2448, 2880, 3024, 3120, 3168, 3624, 4680, 4920, 5388, 5400, 5880, 6600, 6720, 6984, 7080, 7560, 8424, 8700, 8784, 9744, 9840, 9888, 10080
OFFSET
1,1
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, B8.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Paul Erdos, Some Unconventional Problems in Number Theory, Mathematics Magazine, Vol. 52, No. 2, Mar., 1979, pp. 67-70. See Problem 4. p. 68.
Paul Erdos, Some unconventional problems in number theory, Acta Mathematica Hungarica, 33(1):71-80, 1979.
MATHEMATICA
omegaBarrierQ[n_] := (For[m = 1, m < n, m++, If[m + PrimeOmega[m] > n, Return[False]]]; True); Select[Range[2, 1100], omegaBarrierQ] (* Amiram Eldar after Jean-François Alcover at A005236 *)
PROG
(PARI) is(n)=if(isprime(n-1) && isprime(n\2-1), for(k=3, log(n)\log(2), if(bigomega(n-k)>k, return(0))); 1, n<5 && n>1) \\ Charles R Greathouse IV, Sep 20 2012
CROSSREFS
Cf. A005236.
Sequence in context: A018703 A161710 A018758 * A294342 A094372 A039880
KEYWORD
nonn
AUTHOR
Naohiro Nomoto, Mar 28 2002
STATUS
approved