login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005236
Barriers for omega(n): numbers n such that, for all m < n, m + omega(m) <= n.
(Formerly M0501)
3
2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 17, 18, 20, 24, 26, 28, 30, 33, 38, 42, 48, 50, 54, 60, 65, 74, 82, 84, 90, 98, 102, 108, 110, 114, 126, 129, 138, 150, 164, 168, 174, 180, 194, 198, 228, 234, 244, 252, 258, 264, 270, 290, 294, 318, 348, 354, 360, 384, 390, 402
OFFSET
1,1
COMMENTS
omega(m) is the number of distinct prime factors of m.
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, B8.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Paul Erdős, Some Unconventional Problems in Number Theory, Mathematics Magazine, Vol. 52, No. 2, Mar., 1979, pp. 67-70. See Problem 4, p. 68.
Paul Erdős, Some unconventional problems in number theory, Acta Mathematica Hungarica, 33(1):71-80, 1979.
EXAMPLE
1 + omega(1) = 1, 2 + omega(2) = 3, 3 + omega(3) = 4, 4 + omega(4) = 5, 5 + omega(5) = 6.
Thus we have verified that m + omega(m) < 6 for m < 6, so 6 is in the sequence.
But since 6 + omega(6) = 8 > 7, 7 is not in the sequence.
MATHEMATICA
omegaBarrierQ[n_] := (For[m = 1, m < n, m++, If[m + PrimeNu[m] > n, Return[False]]]; True); Select[Range[2, 500], omegaBarrierQ] (* Jean-François Alcover, Feb 03 2015 *)
PROG
(PARI) is(n)=for(k=1, log(n)\log(5), if(omega(n-k)>k, return(0))); n>1 \\ Charles R Greathouse IV, Sep 19 2012
(Haskell)
a005236 n = a005236_list !! (n-1)
a005236_list = filter (\x -> all (<= x) $ map a229109 [1..x-1]) [2..]
-- Reinhard Zumkeller, Sep 13 2013
CROSSREFS
Sequence in context: A164043 A172248 A082415 * A051250 A143071 A305759
KEYWORD
nonn,nice
EXTENSIONS
More terms from John W. Layman
STATUS
approved