login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Barriers for bigomega(n): numbers n such that, for all m < n, m + bigomega(m) <= n.
1

%I #17 Feb 26 2024 22:43:49

%S 2,3,4,6,8,12,24,48,60,108,168,264,348,360,384,480,720,864,888,1020,

%T 1320,1440,2040,2064,2448,2880,3024,3120,3168,3624,4680,4920,5388,

%U 5400,5880,6600,6720,6984,7080,7560,8424,8700,8784,9744,9840,9888,10080

%N Barriers for bigomega(n): numbers n such that, for all m < n, m + bigomega(m) <= n.

%D R. K. Guy, Unsolved Problems in Number Theory, B8.

%H Charles R Greathouse IV, <a href="/A068597/b068597.txt">Table of n, a(n) for n = 1..10000</a>

%H Paul Erdos, <a href="https://www.jstor.org/stable/2689842">Some Unconventional Problems in Number Theory</a>, Mathematics Magazine, Vol. 52, No. 2, Mar., 1979, pp. 67-70. See Problem 4. p. 68.

%H Paul Erdos, <a href="https://users.renyi.hu/~p_erdos/1979-23.pdf">Some unconventional problems in number theory</a>, Acta Mathematica Hungarica, 33(1):71-80, 1979.

%t omegaBarrierQ[n_] := (For[m = 1, m < n, m++, If[m + PrimeOmega[m] > n, Return[False]]]; True); Select[Range[2, 1100], omegaBarrierQ] (* _Amiram Eldar_ after _Jean-François Alcover_ at A005236 *)

%o (PARI) is(n)=if(isprime(n-1) && isprime(n\2-1),for(k=3,log(n)\log(2),if(bigomega(n-k)>k,return(0)));1, n<5 && n>1) \\ _Charles R Greathouse IV_, Sep 20 2012

%Y Cf. A005236.

%K nonn

%O 1,1

%A _Naohiro Nomoto_, Mar 28 2002