

A068542


Period of the fraction 1/3^n.


3




OFFSET

1,1


COMMENTS

The length of the period is the number of digits of a(n): 1, 1, 3, 9, 27, 81, ... The terms a(n) are more precisely the integers made from the digits of a period, starting with the first nonzero digit.  M. F. Hasler, Apr 23 2021


LINKS



FORMULA

a(n) = floor(10^(3^max(n2,0)+L(3^n))/3^n) where L(m) = floor(log10(m)).  M. F. Hasler, Apr 23 2021


EXAMPLE

1/3^3 = 0.0370370370..., hence a(3) = 370.


PROG

(PARI) apply( {A068542(n)=10^(3^max(n2, 0)+logint(3^n, 10))\3^n}, [1..6]) \\ M. F. Hasler, Apr 23 2021


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



