|
|
A068542
|
|
Period of the fraction 1/3^n.
|
|
3
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The length of the period is the number of digits of a(n): 1, 1, 3, 9, 27, 81, ... The terms a(n) are more precisely the integers made from the digits of a period, starting with the first nonzero digit. - M. F. Hasler, Apr 23 2021
|
|
LINKS
|
Table of n, a(n) for n=1..6.
|
|
FORMULA
|
a(n) = floor(10^(3^max(n-2,0)+L(3^n))/3^n) where L(m) = floor(log10(m)). - M. F. Hasler, Apr 23 2021
|
|
EXAMPLE
|
1/3^3 = 0.0370370370..., hence a(3) = 370.
|
|
PROG
|
(PARI) apply( {A068542(n)=10^(3^max(n-2, 0)+logint(3^n, 10))\3^n}, [1..6]) \\ M. F. Hasler, Apr 23 2021
|
|
CROSSREFS
|
Sequence in context: A049330 A274040 A266363 * A036112 A266230 A134884
Adjacent sequences: A068539 A068540 A068541 * A068543 A068544 A068545
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Benoit Cloitre, Mar 22 2002
|
|
STATUS
|
approved
|
|
|
|