The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A134884 A three person Markov game designed to have a limiting ratio near 1/Alpha: Ma matrix=Mb = {{0, 1}, {-67, -67}}; game value =-67; Mc={{0, 1, 0}, {0, 0, 1}, {134, 0, 137}}: game value=134; Total matrix game value=-601526; Characteristic Polynomial: 601526 + 1203052 x + 1234475 x^2 + 1243453 x^3 + 624507 x^4 + 13735 x^5 + 3 x^6-x^7. 0
 3, 1, 27269, 1954390, 385327519, 45035320119, 6682022825588, 881709781234437, 123029167626415695, 16708818725606483602, 2298930844925022134207, 314329661992199488247899, 43107655899059704928917636 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Relative game value=(Game value Ma/Game value Mc)=-67/134=-1/2; Limiting ratio is: 137.00713868806855 Current value of 1/Alpha: 137.03599679 This hidden person game model is of two spin 1/2 particles interacting through a third hidden particle with a limiting constant of very near 1/Alpha. LINKS Table of n, a(n) for n=1..13. Wikipedia, Fine Structure Constant Index entries for linear recurrences with constant coefficients, signature (70,9112,9313,8978,8978). FORMULA M = {{0, 1, 0, 0, 0, 0, 0}, {-67, -67, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0}, {0, 0, 134, 0, 137, 0, 0}, {0, 0, 0, 0, 0, 0, 1}, {0, 0, 0, 0, 0, -67, -67}}; v[0] = {1, 0, 1, 0, 0, 0, 1}; v[n]=M.v[n-1] a(n) = Sum[v[n][[i]],{i,1,7}] G.f.: -x*(8844*x^4 +8509*x^3 -137*x^2 -209*x +3)/((67*x^2 +67*x +1)*(134*x^3 +137*x -1)). [Colin Barker, Nov 02 2012] MATHEMATICA M = {{0, 1, 0, 0, 0, 0, 0}, {-67, -67, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0}, {0, 0, 134, 0, 137, 0, 0}, {0, 0, 0, 0, 0, 0, 1}, {0, 0, 0, 0, 0, -67, -67}}; v[0] = {1, 0, 1, 0, 0, 0, 1}; v[n_] := v[n] = M.v[n - 1]; a = Table[Apply[Plus, v[n]], {n, 0, 50}] CROSSREFS Sequence in context: A068542 A036112 A266230 * A229850 A269162 A033909 Adjacent sequences: A134881 A134882 A134883 * A134885 A134886 A134887 KEYWORD nonn,uned,easy AUTHOR Roger L. Bagula, Jan 29 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 14:08 EDT 2024. Contains 372717 sequences. (Running on oeis4.)