login
A066532
If n is odd a(n) = 1, if n is even a(n) = 2^(n-1).
1
1, 2, 1, 8, 1, 32, 1, 128, 1, 512, 1, 2048, 1, 8192, 1, 32768, 1, 131072, 1, 524288, 1, 2097152, 1, 8388608, 1, 33554432, 1, 134217728, 1, 536870912, 1, 2147483648, 1, 8589934592, 1, 34359738368, 1, 137438953472, 1, 549755813888, 1, 2199023255552
OFFSET
1,2
COMMENTS
Size of Frattini subgroup of the group of n X n signed permutations matrices (described in sequence A066051).
FORMULA
G.f.: 1/(1-x^2) + 2*x*(1+2*x^2)/(1-2*x^2). - Paul Barry, Jun 17 2006
a(n) = 2^n*(1-(-1)^n)/2+(1+(-1)^n)/2. - Paul Barry, Jun 17 2006
E.g.f.: sinh(x) + sinh(x)^2. - Arkadiusz Wesolowski, Aug 13 2012
a(n) = (2 - (n mod 2))^(n - 1). - Wesley Ivan Hurt, Jul 21 2014
MAPLE
A066532:=n->(2 - (n mod 2))^(n - 1): seq(A066532(n), n=1..50); # Wesley Ivan Hurt, Jul 21 2014
MATHEMATICA
Table[ If[ OddQ[n], 1, 2^(n - 1)], {n, 42} ]
PROG
(PARI) a(n) = { if (n%2, 1, 2^(n-1)) } \\ Harry J. Smith, Feb 22 2010
CROSSREFS
Sequence in context: A351708 A008309 A131175 * A205397 A020778 A118961
KEYWORD
nonn,easy
AUTHOR
Sharon Sela (sharonsela(AT)hotmail.com), Jan 06 2002
EXTENSIONS
More terms from Robert G. Wilson v, Jan 07 2002
More terms from Ralf Stephan, Jul 25 2003
STATUS
approved