|
|
A066472
|
|
Numbers having exactly six anti-divisors.
|
|
1
|
|
|
32, 49, 50, 60, 72, 81, 121, 128, 145, 180, 181, 196, 264, 288, 324, 361, 480, 529, 684, 685, 961, 1156, 1405, 2304, 2401, 2500, 2521, 2704, 2809, 4624, 4705, 5041, 5184, 7396, 8064, 8581, 9385, 10816, 11881, 13456, 14281, 25600, 26569, 27556, 34585
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
See A066272 for definition of anti-divisor.
|
|
LINKS
|
|
|
MAPLE
|
local k, n, t;
for n from 1 to q do
t:=0; for k from 2 to n-1 do if abs((n mod k)-k/2)<1 then t:=t+1; fi; od;
if t=6 then print(n); fi; od; end:
|
|
MATHEMATICA
|
antid[n_] := Select[ Union[ Join[ Select[ Divisors[2n - 1], OddQ[ # ] && # != 1 & ], Select[ Divisors[2n + 1], OddQ[ # ] && # != 1 & ], 2n/Select[ Divisors[ 2*n], OddQ[ # ] && # != 1 &]]] }, # < n & ]]; Select[ Range[10^4], Length[ antid[ # ]] == 6 & ]
|
|
PROG
|
(Python)
from sympy.ntheory.factor_ import antidivisor_count
A066472_list = [n for n in range(1, 10**5) if antidivisor_count(n) == 6] # Chai Wah Wu, Jul 25 2015
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|