login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A222300 Length of the closed curve through Gaussian primes described in A222298. 3
32, 48, 1316, 72, 1536, 168, 168, 152, 152, 1536, 140, 352, 352, 132, 172, 280, 648, 132, 92, 12, 96, 32, 332, 332, 460, 30492, 652, 328, 460, 30492, 748, 236, 64, 112, 204, 336, 336, 24560, 24560, 448, 440, 13016, 1536, 316, 108, 2224, 132, 116, 864, 80, 1128 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The Gaussian prime spiral is described in the short note by O'Rourke and Wagon. It is not known if every iteration is a closed loop. See A222298 for the number of line segments between primes.
REFERENCES
Joseph O'Rourke and Stan Wagon, Gaussian prime spirals, Mathematics Magazine, vol. 86, no. 1 (2013), p. 14.
LINKS
EXAMPLE
The loop beginning with 31 is {31, 43, 43 - 8i, 37 - 8i, 37 - 2i, 45 - 2i, 45 - 8i, 43 - 8i, 43, 47, 47 - 2i, 45 - 2i, 45 + 2i, 47 + 2i, 47, 43, 43 + 8i, 45 + 8i, 45 + 2i, 37 + 2i, 37 + 8i, 43 + 8i, 43, 31}. This loop is 168 units long.
MATHEMATICA
loop[n_] := Module[{p = n, direction = 1}, lst = {n}; While[While[p = p + direction; ! PrimeQ[p, GaussianIntegers -> True]]; direction = direction*(-I); AppendTo[lst, p]; ! (p == n && direction == 1)]; Length[lst]]; cp = Select[Range[1000], PrimeQ[#, GaussianIntegers -> True] &]; Table[loop[p]; Total[Abs[Differences[lst]]], {p, cp}]
CROSSREFS
Sequence in context: A043982 A236330 A045023 * A259770 A066472 A140172
KEYWORD
nonn
AUTHOR
T. D. Noe, Feb 25 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 26 15:12 EDT 2023. Contains 365660 sequences. (Running on oeis4.)