login
A066013
Number of codes having highest minimal Lee distance of any Type 4^Z self-dual code of length n over Z/4Z which does not have all Euclidean norms divisible by 8, that is, is strictly Type I. Compare A105688.
1
1, 1, 1, 1, 2, 1, 1, 3, 11, 5, 3, 39, 8, 1, 15
OFFSET
1,5
LINKS
S. T. Dougherty, M. Harada and P. Solé, Shadow Codes over Z_4, Finite Fields Applic., 7 (2001), 507-529.
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).
CROSSREFS
Cf. A066012 for minimal Lee distances of these codes. See also A066014-A066017.
Sequence in context: A337219 A220898 A336163 * A212261 A014521 A084389
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Dec 11 2001; revised May 06 2005
STATUS
approved