login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066010
Triangle of covering numbers T(n,k) = C(n,k,k-1), n >= 2, 2 <= k <= n.
10
1, 2, 1, 2, 3, 1, 3, 4, 4, 1, 3, 6, 6, 5, 1, 4, 7, 12, 9, 6, 1, 4, 11, 14, 20, 12, 7, 1, 5, 12, 25, 30, 30, 16, 8, 1, 5, 17, 30, 51, 50, 45, 20, 9, 1, 6, 19, 47, 66
OFFSET
2,2
COMMENTS
C(v,k,t) is the smallest number of k-subsets of an n-set such that every t-subset is contained in at least one of the k-subsets.
REFERENCES
CRC Handbook of Combinatorial Designs, 1996, p. 263.
W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992.
LINKS
D. Applegate, E. M. Rains and N. J. A. Sloane, On asymmetric coverings and covering numbers, J. Comb. Des. 11 (2003), 218-228.
K. J. Nurmela and Patric R. J. Östergård, New coverings of t-sets with (t+1)-sets, J. Combinat. Designs, 7 (1999), 217-226.
K. J. Nurmela and Patric R. J. Östergård, New coverings of t-sets with (t+1)-sets (appendix), J. Combinat. Designs, 7 (1999), 217-226.
EXAMPLE
Table of values of C(v,k,k-1):
v\k.2..3..4...5...6...7...8..9.10.11.12.13
.2 .1
.3 .2..1
.4 .2..3..1
.5 .3..4..4...1
.6 .3..6..6...5...1
.7 .4..7.12...9...6...1
.8 .4.11.14..20..12...7...1
.9 .5.12.25..30..30..16...8..1
10 .5.17.30..51..50..45..20..9..1
11 .6.19.47..66...a..84..63.25.10..1
12 .6.24.57.113.132...b.126.84.30.11..1
13 .7.26.78.???.245.???..?.185.??.36.12.1
where a in range 96-100, b in range 165-176
CROSSREFS
Triangle in A066701 gives number of nonisomorphic solutions.
Triangle in A036838 (the Schoenheim bound) gives lower bounds to these entries.
Sequence in context: A269596 A080786 A036838 * A209556 A109974 A213008
KEYWORD
nonn,tabl,nice
AUTHOR
N. J. A. Sloane, Dec 30 2001
STATUS
approved