login
A066701
Triangle giving number of nonisomorphic minimal covering designs with parameters (n, k, k-1) (designs achieving the covering number C(n,k,k-1) given in A066010), for n >= 2, 2 <= k <= n.
1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 5, 1, 6, 1, 1, 1, 1, 1, 77, 3, 2, 1, 1, 1, 1, 58, 1, 40, 1, 20, 1, 1, 1, 1, 2
OFFSET
2,18
COMMENTS
C(v,k,t) is the smallest number of k-subsets of an n-set such that every t-subset is contained in at least one of the k-subsets. This sequence says how many different solutions there are for C(n,k,k-1).
REFERENCES
CRC Handbook of Combinatorial Designs, 1996, p. 263.
W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992.
LINKS
D. Applegate, E. M. Rains and N. J. A. Sloane, On asymmetric coverings and covering numbers, J. Comb. Des. 11 (2003), 218-228.
K. J. Nurmela and Patric R. J. Östergård, New coverings of t-sets with (t+1)-sets, J. Combinat. Designs, 7 (1999), 217-226.
K. J. Nurmela and Patric R. J. Östergård, New coverings of t-sets with (t+1)-sets (appendix), J. Combinat. Designs, 7 (1999), 217-226.
CROSSREFS
Cf. A066010. A030129 gives entries in second column in the cases when a Steiner triple system exists.
A051390 gives entries in 3rd column in the cases when a Steiner quadruple system exists.
Sequence in context: A193349 A380587 A053231 * A046563 A046591 A361236
KEYWORD
nonn,nice,tabl
AUTHOR
N. J. A. Sloane, Jan 11 2002
STATUS
approved