login
A065317
Largest prime divisor of the sum of the n-th primorial and the (n+1)-st prime.
4
5, 11, 37, 17, 101, 30047, 510529, 9699713, 1427, 76829, 789077, 659863, 810104837, 13082761331670077, 652833094897, 32589158477190044789, 1922760350154212639131, 28406001782370300553, 770555057, 94904036422299534098897, 40729680599249024150621323549
OFFSET
1,1
LINKS
Tyler Busby, Table of n, a(n) for n = 1..84 (terms 1..68 from Daniel Suteu, terms 69..79 from Sean A. Irvine)
Romeo Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012-2023. - From N. J. A. Sloane, Jun 13 2012
FORMULA
a(n) = A006530(A002110(n) + A000040(n+1)).
a(n) = A006530(A060881(n)). - Michel Marcus, Sep 08 2023
EXAMPLE
For n = 4, 4th primorial = 210, prime(5) = 11, sum = 210 + 11 = 13 * 17, a(4) = 17.
MATHEMATICA
With[{nn=20}, FactorInteger[#][[-1, 1]]&/@(Total/@Thread[{FoldList[ Times, Prime[Range[nn]]], Prime[Range[nn]+1]}])] (* Harvey P. Dale, Jul 26 2020 *)
PROG
(PARI) a(n) = vecmax(factor(vecprod(primes(n)) + prime(n+1))[, 1]); \\ Daniel Suteu, May 26 2022
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 29 2001
EXTENSIONS
Name clarified by Felix Fröhlich, May 26 2022
STATUS
approved