login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065303
Neither n nor sigma(n) is squarefree.
6
12, 24, 27, 28, 32, 40, 44, 48, 52, 54, 56, 60, 63, 68, 75, 76, 81, 84, 88, 90, 92, 96, 98, 99, 108, 112, 120, 124, 125, 126, 132, 135, 136, 140, 147, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 184, 188, 189, 192, 198, 204, 207, 212, 216, 220
OFFSET
1,1
LINKS
EXAMPLE
n = 147 = 3*7*7, sigma(147) = 2*2*3*19 = 228.
MATHEMATICA
Select[Range@ 220, Nor[SquareFreeQ@ #, SquareFreeQ@ DivisorSigma[1, #]] &] (* Michael De Vlieger, Mar 18 2017 *)
Select[Range[250], NoneTrue[{#, DivisorSigma[1, #]}, SquareFreeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 22 2019 *)
PROG
(PARI) n=0; for (m = 1, 10^9, if (!moebius(m) && !moebius(sigma(m)), write("b065303.txt", n++, " ", m); if (n==1000, return)) ) \\ Harry J. Smith, Oct 16 2009
(PARI) sigmaSquarefree(f)=my(v=vector(#f~, i, (f[i, 1]^(f[i, 2]+1)-1) / (f[i, 1]-1))); for(i=2, #v, for(j=1, i-1, if(gcd(v[i], v[j])>1, return(0)))); for(i=1, #v, if(!issquarefree(v[i]), return(0))); 1
list(lim)=my(v=List()); forfactored(k=12, lim\1, if(!issquarefree(k) && !sigmaSquarefree(k[2]), listput(v, k[1]))); Vec(v) \\ Charles R Greathouse IV, Jan 08 2018
(Python)
from sympy import divisor_sigma
from sympy.ntheory.factor_ import core
def is_squarefree(n): return core(n) == n
print([i for i in range(1, 251) if not is_squarefree(i) and not is_squarefree(divisor_sigma(i, 1))]) # Indranil Ghosh, Mar 18 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 29 2001
STATUS
approved