login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065299
Numbers k such that sigma(k)*phi(k) is squarefree.
5
1, 2, 4, 9, 121, 242, 529, 1058, 2209, 3481, 4418, 5041, 6889, 6962, 10082, 11449, 13778, 17161, 22898, 27889, 32041, 34322, 51529, 55778, 57121, 64082, 96721, 103058, 114242, 120409, 128881, 146689, 175561, 185761, 193442, 196249, 218089
OFFSET
1,2
LINKS
Harry J. Smith and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (terms 1..500 from Smith)
FORMULA
Solutions to abs(A008683(A000203(x)*A000010(x))) = 1.
EXAMPLE
All solutions are either squares or twice squares. Proper subset of A055008 or A028982. Several squares (of primes) and 2*squares are not here. E.g., 242 is here because phi(242) = 110, sigma(242) = 399, 2*5*11*3*7*19 is squarefree; 18 is not here, since 2*3*3*13 is not squarefree.
MATHEMATICA
a[x_] := Abs[MoebiusMu[DivisorSigma[1, x]*EulerPhi[x]]] Do[s=as[n]; If[Equal[s, 1], Print[{n, Sqrt[n]}]], {n, 1, 1000000}]
Select[Range[250000], SquareFreeQ[DivisorSigma[1, #]*EulerPhi[#]]&] (* Harvey P. Dale, Jul 15 2015 *)
PROG
(PARI) n=0; for (m = 1, 10^9, s=abs(moebius(sigma(m)*eulerphi(m))); if (s==1, write("b065299.txt", n++, " ", m); if (n==500, return))) \\ Harry J. Smith, Oct 15 2009
(PARI) is(f)=my(n=#f~, v=List()); for(i=1, n, if(f[i, 1]>2, listput(v, f[i, 1]-1)); if(f[i, 2]>2, return(0), f[i, 2]>1, listput(v, f[i, 1])); listput(v, (f[i, 1]^(f[i, 2]+1)-1)/(f[i, 1]-1))); for(i=2, #v, for(j=1, i-1, if(gcd(v[i], v[j])>1, return(0)))); for(i=1, #v, if(!issquarefree(v[i]), return(0))); 1
sq(f)=f[, 2]*=2; f
double(f)=if(#f~ && f[1, 1]==2, f[1, 2]++, f=concat([2, 1], f)); f
list(lim)=my(v=List()); forsquarefree(n=1, sqrtint(lim\1), if(is(sq(n[2])), listput(v, n[1]^2))); forsquarefree(n=1, sqrtint(lim\2), if(is(double(sq(n[2]))), listput(v, 2*n[1]^2))); Set(v) \\ Charles R Greathouse IV, Feb 05 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 29 2001
STATUS
approved