login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064511
Ramanujan's function F_5(q).
1
1, 10, 0, 0, -30, 30, -20, 0, 0, 70, -20, 120, 0, 0, -60, 40, -110, 0, 0, 200, -90, 120, 0, 0, -100, 130, -120, 0, 0, 300, -60, 320, 0, 0, -160, 120, -210, 0, 0, 240, -100, 420, 0, 0, -360, 210, -220, 0, 0, 430, -120, 320, 0, 0, -200, 360, -300, 0, 0, 600, -120, 620
OFFSET
0,2
LINKS
S. Ahlgren, The sixth, eighth, ninth and tenth powers of Ramanujan's theta function, Proc. Amer. Math. Soc., 128 (1999), 1333-1338; F_5(q).
FORMULA
subs(q=-q, f)^5/subs(q=-q^5, f)+5*q*subs(q=-q^5, f)^5/subs(q=-q, f), where f = A010815 = Sum_{k=-infinity, infinity} (-1)^k*q^(k*(3*k-1)/2).
EXAMPLE
G.f. = 1 + 10*q - 30*q^4 + 30*q^5 - 20*q^6 + 70*q^9 - 20*q^10 + 120*q^11 - 60*q^14 + ...
MATHEMATICA
f[q_] := Sum[(-1)^k*q^(k*(3*k - 1)/2), {k, - Infinity, Infinity}];
CoefficientList[Series[f[-q]^5/f[-q^5] + 5*q*f[-q^5]^5/f[-q], {q, 0, 70}], q] (* G. C. Greubel, May 29 2019 *)
CROSSREFS
See A000122 for F_2, A004016 for F_3, A004013 for F_4, A064511 (this sequence) for F_5, A064512 for F_7.
Sequence in context: A167165 A288435 A287734 * A341809 A340947 A306934
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Oct 06 2001
STATUS
approved