login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063985
Partial sums of cototient sequence A051953.
10
0, 1, 2, 4, 5, 9, 10, 14, 17, 23, 24, 32, 33, 41, 48, 56, 57, 69, 70, 82, 91, 103, 104, 120, 125, 139, 148, 164, 165, 187, 188, 204, 217, 235, 246, 270, 271, 291, 306, 330, 331, 361, 362, 386, 407, 431, 432, 464, 471, 501, 520, 548, 549, 585, 600, 632, 653, 683
OFFSET
1,3
COMMENTS
Number of elements in the set {(x,y): 1 <= x <= y <= n, 1 = gcd(x,y)}; a(n) = A000217(n) - A002088(n) = A100613(n) - A185670(n). - Reinhard Zumkeller, Jan 21 2013
8*a(n) is the number of dots not in direct reach via a straight line from the center of a 2*n+1 X 2*n+1 array of dots. - Kiran Ananthpur Bacche, May 25 2022
LINKS
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
FORMULA
a(n) = Sum_{x=1..n} (x - phi(x)) = Sum(x) - Sum(phi(x)) = A000217(n) - A002088(n), phi(n) = A000010(n), cototient(n) = A051953(n).
a(n) = n^2 - A091369(n). - Enrique Pérez Herrero, Feb 25 2012
G.f.: x/(1 - x)^3 - (1/(1 - x))*Sum_{k>=1} mu(k)*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Mar 18 2017
a(n) = (1/2 - 3/Pi^2)*n^2 + O(n*log(n)). - Amiram Eldar, Jul 26 2022
MATHEMATICA
f[n_] := n(n + 1)/2 - Sum[ EulerPhi@i, {i, n}]; Array[f, 58] (* Robert G. Wilson v *)
Accumulate[Table[n-EulerPhi[n], {n, 1, 60}]] (* Harvey P. Dale, Aug 19 2015 *)
PROG
(PARI) { a=0; for (n=1, 1000, write("b063985.txt", n, " ", a+=n - eulerphi(n)) ) } \\ Harry J. Smith, Sep 04 2009
(Haskell)
a063985 n = length [()| x <- [1..n], y <- [x..n], gcd x y > 1]
-- Reinhard Zumkeller, Jan 21 2013
(Python)
from sympy.ntheory import totient
def a(n): return sum(x - totient(x) for x in range(1, n + 1))
[a(n) for n in range(1, 51)] # Indranil Ghosh, Mar 18 2017
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def A063985(n): # based on second formula in A018805
if n == 0:
return 0
c, j = 0, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*(k1*(k1+1)-2*A063985(k1)-1)
j, k1 = j2, n//j2
return (2*n+c-j)//2 # Chai Wah Wu, Mar 24 2021
(Java)
// Save the file as A063985.java to compile and run
import java.util.stream.IntStream;
import java.util.*;
public class A063985 {
public static int getInvisiblePoints(int n) {
Set<Float> slopes = new HashSet<Float>();
IntStream.rangeClosed(1, n).forEach(i ->
{IntStream.rangeClosed(1, n).forEach(j ->
slopes.add(Float.valueOf((float)i/(float)j))); });
return (n * n - slopes.size() + n - 1) / 2;
}
public static void main(String args[]) throws Exception {
IntStream.rangeClosed(1, 30).forEach(i ->
System.out.println(getInvisiblePoints(i)));
}
} // Kiran Ananthpur Bacche, May 25 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Sep 06 2001
EXTENSIONS
Corrected by Robert G. Wilson v, Dec 13 2006
STATUS
approved