login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A282737 Expansion of (x^6 - x^4 + x^3 - x - 1)/((x - 1)^3*(x + 1)^2). 2
1, 2, 4, 5, 9, 10, 15, 16, 22, 23, 30, 31, 39, 40, 49, 50, 60, 61, 72, 73, 85, 86, 99, 100, 114, 115, 130, 131, 147, 148, 165, 166, 184, 185, 204, 205, 225, 226, 247, 248, 270, 271, 294, 295, 319, 320, 345, 346, 372, 373, 400, 401, 429, 430, 459, 460, 490, 491, 522, 523, 555, 556, 589, 590, 624 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

Mark Thomas, Email to N. J. A. Sloane, Mar 03 2017

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).

FORMULA

From Colin Barker, Mar 04 2017: (Start)

a(n) = (n^2 + 14*n) / 8 for n>1 and even.

a(n) = (n^2 + 12*n - 5) / 8 for n>1 and odd.

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4. (End)

a(n) = Sum_{k=0..n} k*(k+1)/2 mod (k+2) for n>=2. - Paolo P. Lava, Apr 11 2017

PROG

(PARI) Vec((x^6 - x^4 + x^3 - x - 1)/((x - 1)^3*(x + 1)^2) + O(x^60)) \\ Colin Barker, Mar 04 2017

CROSSREFS

First differences give A282738.

Sequence in context: A063985 A050052 A071349 * A039891 A280729 A213011

Adjacent sequences:  A282734 A282735 A282736 * A282738 A282739 A282740

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Mar 04 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 11 09:52 EDT 2020. Contains 336423 sequences. (Running on oeis4.)