login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063951
Every number is the sum of 4 squares; these are the odd numbers n such that the first square can be taken to be any positive square < n.
3
1, 3, 5, 7, 9, 13, 15, 17, 21, 25, 33, 41, 45, 49, 57, 65, 73, 81, 89, 97, 105, 129, 145, 153, 169, 177, 185, 201, 209, 217, 225, 257, 273, 297, 305, 313, 329, 345, 353, 385, 425, 433, 441, 481, 513, 561, 585, 609, 689, 697, 713, 817, 825, 945
OFFSET
1,2
COMMENTS
Odd numbers n such that for all k with 1 <= k < sqrt(n), n - k^2 is not in A004215. - Robert Israel, Jan 24 2018
The only numbers for which allowing k = 0 would make a difference are 7 and 15: These two are not in A063954.
REFERENCES
J. H. Conway, personal communication, Aug 27, 2001.
FORMULA
This A063951 = A063954 U { 7, 15 }. - M. F. Hasler, Jan 27 2018
MAPLE
isA004215:= proc(n)
local t;
t:= padic:-ordp(n, 2);
t::even and (n/2^t) mod 8 = 7
end proc:
filter:= proc(n) andmap(not(isA004215), [seq(n - k^2, k=1..floor(sqrt(n-1)))]) end proc:
select(filter, [seq(i, i=1..1000, 2)]); # Robert Israel, Jan 24 2018
MATHEMATICA
ok[n_] := Range[ Floor[ Sqrt[n] ]] == DeleteCases[ Union[ Flatten[ PowersRepresentations[n, 4, 2]]], 0, 1, 1]; A063951 = Select[ Range[1, 999, 2], ok] (* Jean-François Alcover, Sep 12 2012 *)
PROG
(PARI) is_A063951(n)=bittest(n, 0)&&!forstep(k=sqrtint(n-1), 1, -1, isA004215(n-k^2)&&return) \\ M. F. Hasler, Jan 26 2018
(PARI) A063951=select(is_A063951, [1..945]) \\ M. F. Hasler, Jan 26 2018
CROSSREFS
KEYWORD
nonn,easy,nice,fini,full
AUTHOR
N. J. A. Sloane, Sep 04 2001
STATUS
approved