Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Jan 30 2018 21:10:47
%S 1,3,5,7,9,13,15,17,21,25,33,41,45,49,57,65,73,81,89,97,105,129,145,
%T 153,169,177,185,201,209,217,225,257,273,297,305,313,329,345,353,385,
%U 425,433,441,481,513,561,585,609,689,697,713,817,825,945
%N Every number is the sum of 4 squares; these are the odd numbers n such that the first square can be taken to be any positive square < n.
%C Odd numbers n such that for all k with 1 <= k < sqrt(n), n - k^2 is not in A004215. - _Robert Israel_, Jan 24 2018
%C The only numbers for which allowing k = 0 would make a difference are 7 and 15: These two are not in A063954.
%D J. H. Conway, personal communication, Aug 27, 2001.
%F This A063951 = A063954 U { 7, 15 }. - _M. F. Hasler_, Jan 27 2018
%p isA004215:= proc(n)
%p local t;
%p t:= padic:-ordp(n,2);
%p t::even and (n/2^t) mod 8 = 7
%p end proc:
%p filter:= proc(n) andmap(not(isA004215), [seq(n - k^2, k=1..floor(sqrt(n-1)))]) end proc:
%p select(filter, [seq(i,i=1..1000,2)]); # _Robert Israel_, Jan 24 2018
%t ok[n_] := Range[ Floor[ Sqrt[n] ]] == DeleteCases[ Union[ Flatten[ PowersRepresentations[n, 4, 2]]], 0, 1, 1]; A063951 = Select[ Range[1, 999, 2], ok] (* _Jean-François Alcover_, Sep 12 2012 *)
%o (PARI) is_A063951(n)=bittest(n,0)&&!forstep(k=sqrtint(n-1),1,-1,isA004215(n-k^2)&&return) \\ _M. F. Hasler_, Jan 26 2018
%o (PARI) A063951=select(is_A063951,[1..945]) \\ _M. F. Hasler_, Jan 26 2018
%Y Cf. A004215, A063949, A063950, A063952, A063953, A063954.
%K nonn,easy,nice,fini,full
%O 1,2
%A _N. J. A. Sloane_, Sep 04 2001