login
A063667
Number of solutions of phi(x) = 12n + 2.
4
3, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
LINKS
FORMULA
a(n) = A014197(A017545(n)). - Antti Karttunen, Nov 07 2018
EXAMPLE
In the range n=0..10000, only 18 invphi(12n + 2) sets are nonempty, always with 2 terms. E.g., n = 8034, a(8034) = 2 because 12*8034 + 2 = 96410 and invphi(96410) = {96721,193442}. - Original comment corrected by Antti Karttunen, Nov 07 2018
In the range n <= 100000, there are 48 nonzero values. - Antti Karttunen, Nov 07 2018
MAPLE
with(numtheory): [seq(nops(invphi(2+12*j)), j=0..10000)];
PROG
(PARI)
A014197(n, m=1) = { n==1 && return(1+(m<2)); my(p, q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0, valuation(q=n\d, p=d+1), A014197(q\p^i, p))))}; \\ From A014197 by M. F. Hasler
A063667(n) = A014197(2+(12*n)); \\ Antti Karttunen, Nov 07 2018
(PARI) a(n) = invphiNum(12*n+2); \\ Amiram Eldar, Nov 29 2024, using Max Alekseyev's invphi.gp
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Aug 22 2001
EXTENSIONS
Term a(0) = 3 prepended by Antti Karttunen, Nov 07 2018
STATUS
approved