The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A063667 Number of solutions of EulerPhi(x) = 12n + 2. 4
 3, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Antti Karttunen, Table of n, a(n) for n = 0..100000 FORMULA a(n) = A014197(A017545(n)). - Antti Karttunen, Nov 07 2018 EXAMPLE In range n=0..10000, only 18 invphi(12n + 2) sets are nonempty, always with 2 terms. E.g., n = 8034, a(8034) = 2 because 12*8034 + 2 = 96410 and invphi(96410) = {96721,193442}. - Original comment corrected by Antti Karttunen, Nov 07 2018 In range n <= 100000, there are 48 nonzero values. - Antti Karttunen, Nov 07 2018 MAPLE with(numtheory): [seq(nops(invphi(2+12*j)), j=0..10000)]; PROG (PARI) A014197(n, m=1) = { n==1 && return(1+(m<2)); my(p, q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0, valuation(q=n\d, p=d+1), A014197(q\p^i, p))))}; \\ From A014197 by M. F. Hasler A063667(n) = A014197(2+(12*n)); \\ Antti Karttunen, Nov 07 2018 CROSSREFS Cf. A000010, A002202, A005277, A014197, A017545. Sequence in context: A030121 A320659 A062535 * A171063 A308229 A318673 Adjacent sequences:  A063664 A063665 A063666 * A063668 A063669 A063670 KEYWORD nonn AUTHOR Labos Elemer, Aug 22 2001 EXTENSIONS Term a(0) = 3 prepended by Antti Karttunen, Nov 07 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 17:16 EDT 2020. Contains 337291 sequences. (Running on oeis4.)